TO:Beth Dobkin, Provost
FROM:Valerie Burke, Chair
Academic Senate
DATE:May 20, 2015
RE:Senate Action S-14/15-46CA
Permanent Approval for Math 103
Introduction to Upper Division Mathematics
At the May 13, 2015 meeting of the Academic Senate, the attached Proposal for Permanent Approval for Math 103: Introduction to Upper Division Mathematics was approvedon the Consent Agenda. The proposal wasapproved by a vote of 8-0-0 by the Undergraduate Educational Policies Committee (UEPC) at its April 27, 2015 meeting.All documents related to this proposal can be viewed at the UEPC website (
This action was assigned Senate Action #S-14/15-46CA.
Attachment
cc: President James A. Donahue
Vice ProvostRichard Carp
Dean Roy Wensley
ProposalforPermanentApprovalofMath103
(NB:Math103waspartoftheproposalacceptedinMarch2014toreformthemathematicsmajor.)
1.School:SchoolofScience
Department:DepartmentofMathematicsandComputerScience
CourseNumber:Math 103
CourseTitle:IntroductiontoUpperDivisionMathematics
UpperDivisionStatus:Thiscoursehascollege-levelpre-requisites(seebelow),anden-tailsahighlevelofcognitiveachievement,asitisanin-depthstudyofareasofabstractmathematicsusingthemethodofmathematicalproof.
2.JustificationfortheCourse:Proofsareperhapsthecentralpartofmathematics,astheyaretheformofthelanguagemathematiciansusetocommunicate.Overthepasttwodecadesthemathematicalcommunityhascometorealizethatweneedtobeexplicitinteachingourstudentsaboutthisformandhowtouseit.
Pre-Math103wedidnothaveaclassconcentratingonteachingthetechniquesofproof.StudentslearnedsomeinMath120.Thisknowledgemaybewasbuiltupon,orjustrepeated,inotherupperdivisionmathematicscoursesdependingonthechoicesmadebyindividualinstructorsandthebackgroundsofthestudentsintheclass.Bycreatingaclassinwhichproofsareacentralpillarand having thisclassasthepre-requisitefor severalupperdivisionclasseswewillbeabletocreateamoredevelopmentalmajorinwhichclassescanbuilduponpreviousknowledge.
Inthefuturesomeofourupperdivisioncourseswilltheorybased,andbuildo↵ofthematerialinMath103(thereareMath111,115,131,150,185,193).Ourexpectationisthatthesecourseswillbeabletomovemorequicklyandstudentswillgraspmore,sincetheywillhavehadasemester’sexperiencewithourlanguage.Andotherswillbemoreapplied
coursesandtaughtatalevelreasonableforanystudentwithayearofcalculus(theseareMath113,114,120,134,140).
3.StudentPopulation:Math103is/willberequiredforthemathematicsmajor,andstronglysuggestedforminors.Themathematicsmajor(asrevisedviasubmissiontotheUEPCinMarch2014)hasbeenrevisedsothatthisisnotanadditionalclassforstudents.
4.RelationshiptoPresentCollegeCurriculum:CurrentlyMath120,LinearAlgebraandApplications,isthecoursewherewetrytointroducethetechniqueofproofs.ThisforcesMath120todotoo much.Itistryingtobetheintroductiontoprooftechniquescourseandteachingabstractlinearalgebratothe‘pure’mathmajors,aswellasteachingappliedlinearalgebraandapplicationstothosestudents(sometimesmath,othertimesphysics,economics,etc.)whoareinterestedinthat.MovingtheproofstheorytoMath103willletMath120focus on thetopics ofits title.
Math103willcoveraboutone-halfofthematerialformerlyinMath111.TheremainderofthematerialintheoldMath111andmuchofthatinMath112willbeputintothenewMath111.
Finally,Math103(alongwithMath193)isintendedtoserveasthedepartments“WritingintheDisciplines”class.
5.Anyextraordinaryimplementationcosts:None.Therearenospecialequipmentneedsorunusualclassroomrequirementsassociatedwiththiscourse.
6.LibraryResources:Seeattached.
7.CourseCreditand gradingoptions:Math103isdesignedasalecture/discussioncourse.Studentswhocompletethecoursewillreceiveone(1)SMCcoursecredit. Studentswillmeetwiththeprofessorinclassfor3hours,15minutesperweekthroughoutanacademicsemester.Therewillbeaminimumoftwohoursofstudentworkexpectedoutsideofclassforeveryhourofin-classinstruction.
8.Pre-requisites:(Math27,)Math28or38,andEnglish5.
9.CoursedescriptionworkingforappropriateCollegeCatalog:Thiscourseisanintroductiontomathematicallogicand includes an introduction to Abstract Algebra. Stu-dentswilllearntowriteproofsusingstandard proof-writing organization and terminology.Topicsformalgebrawillincludethedivisionalgorithm,modulararithmeticandgroups.Pre-requisites:English5andMath38,orequivalent.CompletionofMath103andMath193satisfiestheWritingintheDisciplinesrequirementoftheCoreCurriculum.
10.CourseContent: Seeattachedsyllabus
11.ReviewofExperimentalO↵ering:ProfessorSauerbergtaughtMath103inFall2014,basinghissyllabusontheonesubmittedtotheUEPC.Thisistheonlytimethecoursehasbeentaught.HewillalsoteachthecourseinFall2015.
HeadaptedthesyllabusproposedtotheUEPC,butfounditoverlyoptimistic.Afterdis-cussionwiththedepartmentwehavedecidedthatMath103andMath193shouldservejointlyasourWritingintheDisciplinescourses.Thiswillallowtheresearchpaperpartofthecoursetobecovered(asitalreadyis)inMath193.HisFall2015syllabusandschedulewillbesimilartotheonesubmittedwiththisproposal.
Theremainingmaterialinthecourseworkswell,andasanintensive,andwritingintensivecourse,thisshouldbeasuccessfulcourse.
ReviewofLibraryResourcesandInformationLiteracyForMATH103:IntroductiontoUpperDivisionMathematicsLindaWobbe,April2015
MATH103isrequiredofallmathematicsmajorsandminorsasanintroductiontoformalproofsandhigh-levelmathematicstopicsincludingAbstractAlgebra. Thewritingassignmentinvolvesthecreationoflogicalmathematicalproofs.Studentswillbeexpectedtoachieveadeeplevelofunderstandinginawidevarietyofmathematicalconcepts,andwillbenefitfromresourcesthatofferexplanationsandexamplesdifferentfromtherequiredtexts.
I.RequiredResources. TheLibrarywillobtaintherequiredtextsforthisclass,fortextbookreserve.
II.ReferenceSources. Referencesourcesprovidebasicexplanationsanddefinitions,andmaybehelpfultostudentsinthesecourses. TheLibrary’sSubjectGuideforMathematicsliststhefollowingreferencedatabasesCredoLiteratiAccessScience,andthefollowingindividualtexts:
PrincetonCompaniontoMathematics.(Ref510G747pandonline)
WordsofMathematics:anEtymologicalDictionaryofMathematicalTermsUsedinEnglish.(ebrary eBook)
CRCconciseencyclopediaofmathematics(Ref 510.3W438)
Companionencyclopediaofthehistoryandphilosophyofthemathematicalsciences(Ref
510.9G773c)2vols.
Encyclopedicdictionaryofmathematics(Ref510.3It6)4vols.
TheVNRconciseencyclopediaofmathematics(Ref 510.2G282)
III.Books.Mathematicsingeneralismorebook-dependentthanotherdisciplinesintheSchoolofScience. Themathematicsfacultyareresponsiveandengagedinselectingthebestofthenewmathematicspublications. TheLibrary’scollectionincludesabout5,000mathematicstexts,withapproximately$5,000peryearspenttomaintainthemathematicsbookcollection. Thiscourseexploresmanytopics,includingsets(87),induction(20),modulararithmetic(20),abstractalgebra,proofs(95)andgroups(122).ThenumberoftextsintheLibrarycollectionfollowseachterm.
ExamplesofbooksintheLibrarycollectionthatsupportthiscourseinclude: Extendingthefrontiersofmathematics:inquiriesintoproofandargumentation(511.3B865)
Distillingideas:anintroductiontomathematicalthinking(510K159)
Abstractalgebraandsolutionbyradicals(512.02M450)
Therealnumbers:anintroductiontosettheoryandanalysis(511.322St54r)
Aninvitationtoabstractmathematics(510B167)
Roadstoinfinity:themathematicsoftruthandproof(511.322St54)
Proofinmathematicseducation:research,learningandteaching(511.3R272)
Proofiness:thedarkartsofmathematicaldeception(510Se42)
Truththroughproof:aformalistfoundationformathematics(510.1W433)
Charmingproofs:ajourneyintoelegantmathematics(511.3AL78)
IV.Journals. TheLibrary’scollectionalsoincludesover500mathematicsjournalsandthekeydatabaseforarticlediscovery,MathSciNet. JSTOR’sMathematicsandStatisticspackageofjournalarchivesissubscribed. Thecostofsubscribingtothesejournalsanddatabasesisabout$12,000annually.Articlesinmanymathematicsjournalsarehighlyspecialized,andbeyondthereachofundergraduatestudents. Tohelpdirectstudentstothecoreandmostaccessiblemathematicsjournals,theLibraryMathematicsSubjectGuidepresentsabrowsingcollectionwhichcaneachbesearchedindividually,including:
AmericanMathematicalMonthly
TheBulletinandtheNoticesoftheAmericanMathematicalSocietyMathematical Intelligencer
UMAPJournal
IV.LibrarianRecommendations.ThetextbooksforthecourseareonorderfortheLibrary’stextbookcollection. Ongoingcommunicationwiththemathematicsfacultyisexpected tocontinue,andwillensuretheLibrary’scollectionissufficienttomeetthe needsofstudentsinthiscourse. TheSubjectSelectorLibrarianishappytoseethesyllabusadvertisingtheavailabilityof individualstudentappointmentswiththelibrarian.ClassroompresentationscanalsobemadeavailablebythelibrariantoguidestudentstothewealthofresourcesofferedbytheLibrary’scollection.
Math103:IntroductiontoUpperDivisionMathematicsSaintMary’sCollege
Fall2014
Professor:JimSauerberg
Office:GalileoHall101A.Phone:631-4248.e-mail:
webpage:Onmath.stmarys-ca.edu
Lecture:MWF8:00–9:05amGaraventa120.
Coursewebpage:OnMoodle
OfficeHours:Officehourswillbepostedonmyofficedoor(generallyincludingMF9:30am
–12:00pmandT11:30am–2:00pm).Officehoursarethebestplacetogetyourquestionsaboutcoursecontentandhomeworkanswered.
Text:Reading,Writing,andProving.ACloserLookatMathematicsbyUlrichDaeppandPamelaGorkin.AndABookofAbstractAlgebrabyCharlesC.Pinter.Botharerequired.Makesuretogetthe2ndeditionofeach.
Prerequisites:English5andMathematics38,orequivalent.
Major,MinorandCoreCurriculum:Math103isrequiredforalltracksofthemathe-maticsmajor,andisalsoarequiredpartofthemathminor.CompletionofMath103andMath193satisfiestheWritingintheDisciplinesrequirementoftheCoreCurriculum.
CatalogCourseDescription:“ThiscourseisanintroductiontomathematicallogicandproofsandincludesanintroductiontoAbstractAlgebra. Studentswilllearntowriteproofsusingstandardproof-writingorganizationandterminology.Topicsfromalgebrawillincludethedivisionalgorithm,modulararithmetic,ringsandgroups.”
CourseObjective:Thecentralpurposeofthiscourseistoteachyouthecarefuluseoflanguageinthecontextofmathematicalreasoningandproof.Mostofyourcoursessofarhaveconcentratedonlearningalgorithmsforsolvingparticulartypesofproblems;mostcoursesafterthisonewillfocusonlogicalreasoning,conceptualunderstanding,andproofs.Thiscourseisthe“bridge”betweenthetwowaysofapproachingmathematics.Indeed,afterintroductingformal,rigorousmathematicswhichemphasizeslogicandaxiomaticthinking,andlearningvariousstandardtechniquesofproof,wewillapplythislearningtoseveralareasofmathematics.
Grading:Gradesmeasureperformance,notdesireorworkethicorpersonalityortimespentoranyotherquality.Thus,preparationisessentialanddemonstrationiscrucial.
300ptsHomework,Quizzes,Participation200ptsMidtermExams(100ptseach)200ptsFinalExam
CourseGoals:Thiscourseisanintroductiontomathematicallogicandproofwriting.Studentswillbecomeproficientat:
•Recognizingandcomposingbasiclogicstatements,includingthebooleanoperatorsandquantifiers.
•Recognizingandcomposingstatementsofimplication,conversestatements,contrapos-itivestatements,andnegationsofstatements.
•Explainingthedi↵erencebetweenAxioms,Definitions,Lemmas,Theorems,andCorol-laries.
•Readingproofs,understandingtheassumptionsmadeintheproof,andfollowingtheclearandcarefulorganizationofwell-constructedstatementsofimplicationsleadingtoalogicalconclusion.
•Writingproofsusingstandardproof-writingorganizationandterminology,makingtheassumptionsclearandusingcarefulorganizationofwell-constructedstatementsofimplicationstoleadtoalogicalconclusion.
•Techniquesofproof-writing,includingthetechniquesofdirectproof,proofbycontra-diction,andinduction.
•Analyzingargumentssoastoconstructonesthatarewellsupported,arewellreasoned,andarecontrolledbywell-definedaxiomsand/orassumptions.
•Usingtheprocessofpre-proof-writingandscratchworktoenhanceintellectualdiscoveryandunravelcomplexitiesofthought.
Youwillalsopracticeyournewproofreadingandproofwritingskillsintheareasof
•Setsandtheiroperations
•Divisors,thedivisionalgorithm,andEuclid’sAgorithm
•MathematicalInduction
•InjectiveandSurjectiveFunctions
•ModularArithmeticandLinearCongruences
•Groupsandtheirsubgroups
AttendanceandParticipation:Youareexpectedtoattendandparticipateineveryclasssession.Timeintheclassroomwillbespentonlecture,small-groupdiscussions,shortpresentationsby students, andlargerinteractivediscussionasanentireclass.Ifyoumissclass youwillmisstheseopportunitiestolearnandpracticeskillsthatcontributetoyourdevelopmentasamathematicalthinker.Youmayalsomissaquizandtherearenomake-ups.Finally,ifyoumissnumerousclasses,Iwillthinkthatyouarenotseriousaboutyoureducationandwillrememberthatwhenassigningyourgradeattheendofthesemester.
Homework:Homeworkisthemostimportantpartofthisclass.Youshouldworkoftenandassiduouslyonit,rereadingandrevisingyoursolutionsuntiltheyarecorrect,concise,efficient,andelegant.Suche↵ortsarethebestway(theonlyway?)todeepenyourunder-standingofthematerial.Don’tthinkofhomeworkasproblemsthathaveanswersbutasessaypromptswithresponsesthatcan(almost)alwaysbepolishedandimproved.
Homeworkwillbe“sca↵olded”inthatyouwillbuildcontinuallyuponpreviouslylearnedskills.Afteryoulearntowritelogicstatementsandimplicationstatements,youwilllearntousequantifiersandtowritenegationsofthesemorecomplicatedimplicationstatements.Thisbasicmathematicalgrammarwillbeusedwhenyoulearntowriteproofsofyour
implicationstatements.YouwillthenpracticethesewritingandprovingskillsintheareasofSetTheory,ElementaryNumberTheory,andAbstractAlgebra.Proofwritingisthecoreofmathematics(andofthisclass).Inordertomasterproof-writing,youmustreadandwritemanyproofs.Homeworkwillwherethiswillhappen.
Itisunderstoodthatyouronlysourcesofinformationforthehomeworkwillbeourtexts,anynotesyoutookinorforclass,yourclassmates(whenpermissible),yourprofessorandyourbrainpower.
Latehomeworkwillnotbeacceptedforanyreason.
WrittenAssignments:Becauseinmanywaysthisisalanguagecourse,youwillbeex-pectedtolearntoclearlyandpreciselyexpressmathematicalideasinwriting.Inadditiontoconsideringitsmathematicalcontent,thegradingofyourworkwilltakeintoconsider-ationclarityofexpression,completeness,properusageofbothEnglishandmathematicalgrammar,andwhetheryoureallysaidwhatyoumeanttosay. Theproblemswillbegradedonascaleof1to5.Youshouldnotthinkofthegradeasrepresentingapercentagebutasdeliveringamessage:
5—excellentwork;norealcomplaintsoncontentoronwriting.
4—argumentbasicallycorrectbutmissingsomeminordetailsorcontainingsmallerror(s).3—argumentmostlycorrect,butcontainssignificantmisstepinthemathematics; or,anespeciallypoorlywrittenproof.
2—seriousgapsinthemathematics.
1—someideasintherightdirection,butdidn’treallygetthere.0—didn’tdotheproblemoritwascompletelywrong.
Whenyouwriteupanassignment,youareexpectedtoincludesufficientlymanydetailstoenlightensomeonewhodoesnotalreadyknowwhatyouaretryingtosay. Thismayrequirethatyourestateadefinitionorprevioustheoremandsayhowitisusedinyourproof.Donotbeafraidtoincludetoomanydetails.
Quizzes:Daysmaybeginwithashortquizonrecentmaterial.(Thiswillalmostalwaysbedefinitionsandquickcomputations.)Absolutelynolatequizzeswillbegiven.
Take-homeexams:Homeworkwillregularlyincludequestionsthatyouaretosolvebyyourself.Thesearemeanttoprovidebothyouandmewithanindicationofyourpersonal
progressintheclass.Asopposedtotheotherpartsofthehomework,youareonyourhonornottodiscussthesequestionswithanyonebutProfessorSauerberg.Youarefreetouseanyclassnotes,anypreviouslyprovedtheorems,andanythingthatisdistributedinclass.However,youmaynotconsultanybooksexceptthetextbooks,noranyoutsidesources,includingon-linesources.
CultureofCooperationandPlagiarism:Youareexpectedtoworkcooperatively,aswellastotakeresponsibilityforyourownlearning.
Whatyoushoulddo:Discussideasandaskeachother(andme)forhelp.Giveandaskforconstructiveinput,praisingandcriticizingwhereappropriate.Individuallydigestallideasandindividuallywriteyourproofs/solutions.Noteoneachproblemwho(ifanyone)youworkedwith.Rememberthatonthequizzesandtheexamsyouareonyourown,soyouneedtofullyunderstandeachsolution.Insummary,keepcollaborationconstructiveandreasonable.
BeclearthatAnymaterialyousubmitmustbeyourownwork.Itisanactofplagiarismtocopy,inanyway,allorpartofanysolutionwithoutacknowledgment.Itisalsoanactofplagiarismtopermitanothertocopyinanywayallorpartofoneofyoursolutions.Ifyouusesomeoneelse’sideasinyoursolution(oranyotherworkthatyoudoanywhere), youmustgivecredittothatperson,andbesurethatyouunderstandthatworkaswellasifitwere your own.SeetheStudentHandbokforspecificdetails.
In-classexams:Thepurposeofexamsistoencouragethedevelopmentofthenextlevelofproficiencyofthecoursematerial.Thequestionswillgenerallybestraightforwardforanyonewhohasbeendigestingthematerialalongtheway.Typicalquestionswillaskyoutodefineimportantterms,answerandexplaintrue/false,giveashortanswertoquestionsonthematerial,stateanimportanttheorem,developandgivesimpleproofs.
Therewillbetwoin-class,closed-bookexams,likelyMondaySeptember29thand
WednesdayOctober29th.ThefinalexamwillbeMondayDecember8that8:00am.
Theonlyacceptablereasonformissinganexamisasuddenunexpectedseverepersonalemergency.A0willresultfrom an unexcusedabsence.Makeupexamswillnotbegivenforillness,brokenalarmclock,flattire,roommatefromhell,badmysterymeat,etc.
GradingPolicy:
A.Collegedefinition: Excellent
Math103: Outstandingachievement;availableonlyforthehighestaccomplishment.Youarethoroughlyfamiliarwithalldefinitionsandexamplescovered,canpreciselystateandcorrectlyprovealmostallassignedtheoremsfromclass,candoallofthehomeworkexercises,andcanusetheconceptsyoulearnedinthiscoursetosolveunfamiliarproblemscomparableincomplexitytothosedoneinclassandonthehomework.
B.Collegedefinition:Verygood
Math103:Praiseworthyperformance;definitelyaboveaverage.
Youarethoroughlyfamiliarwithalldefinitionsandexamplescovered,canpreciselystateandcorrectlyprovemosttheoremsfromclass,candomostofthehomeworkexercises,andcanusetheconceptsyoulearnedinthiscoursetosolvemostunfamiliarproblemsofcomparablecomplexity.
C.Collegedefinition:Satisfactory Math103:Satisfactoryperformance.
Youarefamiliarwithalldefinitionsandmostexamplescovered,canstateandprovewithoutmajormistakesmanytheoremsfromclass,candothemajorityofthehomeworkexercises,andcanusetheconceptsyoulearnedinthiscoursetosolvesomeunfamiliarproblemsofcomparablecomplexity.
D.Collegedefinition:Barelypassing
Math103:Minimallypassing;lessthanthetypicalundergraduateachievement.
Youarefamiliarwiththemajorityofdefinitionsandmanyexamplescovered,canstateandproveatleasthalfofthetheoremsfromclass,candoatleasthalfofthehomeworkexercises,andcanusetheconceptsyoulearnedinthiscoursetosolveatleastafewunfamiliarproblemsofcomparablecomplexity.
E.Collegedefinition:Failing.
Math103: Youhavedifficultystatingdefinitionsandcomingupwithexamples,donotrememberstatementsoftheoremsand/orcannotprovethem,candofewofthehomeworkexercises,andlacktheskillstoattachunfamiliarproblemsofcomparablecomplexity.
Centerfor WritingAcrosstheCurriculum(CWAC)writing-across-the-curriculumo↵erstwo options for all students, of all disciplines and levels:WritingCircles: Studentsregisterforthe.25courseCOMM190:WritingCirclesandthencontactCWACtoselectaweeklyCircletime.Studentssignup before orduringthefirstweekofthesemester.Duringthesmall-groupworkshops,writersdiscusstheirownprojects,atallstagesoftheprocess.
One-on-onesessions:Studentscall925.631.4684tomakeappointmentsordropin,Dante
202.OnlinesessionsviaSkypeareavailable.Fallhours:4–8p.m.Sunday;12–8p.m.Monday;12–6p.m.Tuesday;and12–8p.m.WednesdayandThursday.WritingAdvisersguidetheirpeerstowardexpressingideasclearly,alwaysweighingaudienceandpurpose.Writersbringtheirassignmentsheetsandreadingsinordertobrainstormideas,revisedrafts,orworkonspecificaspectsofwriting,suchasgrammar,citation,thesisdevelopment,organization,criticalreading,orresearchmethods.Theymaydiscussanygenre,includingpoetry,sciencelabreports,argument-drivenresearch,orscholarshipapplicationletters.
LibraryResources:Reference/InformationassistanceisavailableattheReferenceDesk,byphone(925)631-4624,textmessageat(925)235-4624orChat(IM). ChecktheLibrarys“AskUs”linkfordetails:r(925)631-4232.
Math103,Fall2014,TentativeSchedule
DATE / TEXT / TOPIC(S)Wed.Sept.3 / Chapter1 / Introduction
Fri.Sept.5 / Chapter2 / IntroductiontoLogicalConstructions
Mon.Sept.8 / Chapter3 / ContrapositiveandConverse
Wed.Sept.10 / Chapter4 / SetNotationandQuantifiers
Fri.Sept.12 / Chapter5 / Proof Techniques
Mon.Sept.15 / Chapter6 / Sets
Wed.Sept.17 / Chapter6 / ProofwithSets
Fri.Sept.19
Mon.Sept.22 / Chapter7 / LATEX
OperationsonSets
Wed.Sept.24 / Chapter9 / PowerSet
Fri.Sept.26 / extra
Mon.Sept. / 29 / EXAM1
Wed.Oct.1 / Chapter18 / Induction
Fri.Oct.3 / Chapter18 / Induction
Mon.Oct.6 / DivisorsandDivisionAlgorithm
Wed.Oct.8 / Euclid’sAlgorithm
Fri.Oct.10 / Congruences
Mon.Oct.13 / LinearCongruences,Zn
Wed.Oct.15 / Chapter14 / Functions
Fri.Oct.17 / Chapter15 / InjectiveandSurjective
Mon.Oct.20 / Chapter16 / Inverses
Wed.Oct.22 / Fermat’sTheorem
Fri.Oct.24 / NoClass
Mon.Oct.27 / Chapter2P / Operations
Wed.Oct.29EXAM2
Fri. / Oct.3 / Chapter3P / Groups
Mon. / Nov.3 / Chapter3P / MoreExamples
Wed. / Nov.5 / Chapter4P / ElementaryProperties
Fri. / Nov.7 / Chapter5P / Subgroups
Mon. / Nov.10 / Chapter5P / Subgroups
Wed. / Nov.12 / Chapter10P / Orderofelement
Fri. / Nov.14 / Chapter11P / CyclicGroups
Mon. / Nov.17 / Chapter11P / CyclicGroups
Wed. / Nov19 / Chapter13P / CountingCoset
Fri. / Nov.21 / Chapter13P / Lagrange’s Theorem
Mon. / Nov.24 / Chapter13P / Consequences
Wed. / Nov.26 / NoClass
Fri. / Nov.28 / NoClass
Mon. / Dec.1 / Chapter14P / Homomorphism, Kernals
Wed. / Dec.3 / Chapter14P / Isomorphisms
Fri. / Dec.5 / extra
Mon.Dec.8FINALEXAM