SUPPORTING INFORMATION

Fe3C nanorods encapsulated in N-doped carbon nanotubes as active electrocatalysts for hydrogen evolution reaction

Lulu Zhang,a Yongting Chen,b Pingping Zhao,bWei Luo b,*, Shengli Chenb, Minhua Shaoa,c,*

aDepartment of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

b College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei,
430072, PR China

cEnergy Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,Hong Kong

*; . Tel: +852-34692269

Figure S1. TEM image(a) andN element mapping image(b) of Fe3C@NCNTcomposite showing Fe3C nanorods encapsulated in N-doped carbon nanotubes.

Element / Fe / O / N / C
Atomic (%) / 0.2 / 4.5 / 3.6 / 91.7

Figure S2.XPS spectrum and composition of Fe3C@NCNT composite.

Figure S3. XPS spectrumofC 1sof Fe3C@NCNTcomposite.

Figure S4. Cyclic voltammogram in an Ar-saturated 0.1 M HClO4 solution, scanning rate = 50 mV s-1. Catalyst loading = 0.765 mg cm-2, scan range is 0.05-1.0V.

Figure S5. Durability testing in an Ar-saturated 0.5 M H2SO4 solution by cycling the electrode between 0.1 and -0.2 V (a), and in an Ar-saturated 1 M KOH solution by cycling the electrode between 0.1 and -0.4 V (b). Catalysts loading = 0.765 mg cm-2.

Figure S6.The most stable H adsorption configuration on a theoretical model of Fe3C (a) and Fe3C@CNT (b) (Top: top view; Bottom: side view) used in DFT calculations.

Figure S7.HRTEM image of Fe3C@NCNT with the insert showing the carbon layers.

Figure S8.Comparison of polarization curves of Fe3C@NCNT and Fe-N-C in a 0.5 M H2SO4 solution. Catalysts loading = 0.225 mg cm-2
.

Figure S9.Polarization curves of Fe3C@NCNT in a 1.0 M KOH solutionbefore and after 1500 cycles in 0.5 M H2SO4. Catalysts loading = 0.765 mg cm-2.

Table S1.Comparisons of HER activities of non-precious metal based and metal free catalysts in acid media.

Materials / Structure / Activity
(overpotential) / Loading
(mg cm-2) / Reference
Fe3C@NCNT / Nanotube / 154 mV at 10mA cm-2 / 0.765 / This work
Co-N-C / 235 mV at 10mA cm-2 / 0.765 / 1
MoS2/SWCNT / Nanosheet / ~220 mV at 10 mA cm-2 / 0.171 / 2
WS2@HNCNF / Nanotube / ~270 mV at 10 mA cm-2 / 0.285 / 3
Co-NCNT / Nanotube / 260 mV at 10 mA cm-2 / 0.28 / 4
Co0.6Mo1.4N2 / Nanoparticle / 200 mV at 10 mA cm-2 / 0.24 / 5
g-C3N4 / Nanoribbon / 207 mV at 10 mA cm-2 / 0.143 / 6
g-C3N4@S–Se-pGr / Nanosheet / 300 mV at 10 mA cm-2 / 0.283 / 7
Co-NG / Nanosheet / ~160 mV at 10 mA cm-2 / 0.285 / 8
FeCo@NC / Nanoparticle / 262 mV at 10 mA cm-2 / 0.285 / 9
MoS2/Mo2C-NCNT / Nanotube / ~200 mV at 2 mA cm-2 / ~2 / 10

References

(1) Zhang, L.; Liu, W.; Dou, Y.; Du, Z.; Shao, M., The Role of Transition Metal and Nitrogen in Metal-N-C Composites for Hydrogen Evolution Reaction at Universal pHs. The Journal of Physical Chemistry C 2016, 120, 29047-29053.

(2) Cai, Y.; Yang, X.; Liang, T.; Dai, L.; Ma, L.; Huang, G.; Chen, W.; Chen, H.; Su, H.; Xu, M., Easy Incorporation of Single-Walled Carbon Nanotubes into Two-Dimensional MoS2 for High-Performance Hydrogen Evolution. Nanotechnology 2014, 25, 465401.

(3) Yu, S.; Kim, J.; Yoon, K. R.; Jung, J.-W.; Oh, J.; Kim, I.-D., Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS2 Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers. ACS applied materials & interfaces 2015, 7, 28116-28121.

(4) Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T., Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values. Angewandte Chemie 2014, 126, 4461-4465.

(5) Cao, B.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G., Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction. Journal of the American Chemical Society 2013, 135, 19186-19192.

(6) Zhao, Y.; Zhao, F.; Wang, X.; Xu, C.; Zhang, Z.; Shi, G.; Qu, L., Graphitic Carbon Nitride Nanoribbons: Graphene-Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution. Angewandte Chemie International Edition 2014, 53, 13934-13939.

(7) Shinde, S.; Sami, A.; Lee, J.-H., Electrocatalytic Hydrogen Evolution Using Graphitic Carbon Nitride Coupled with Nanoporous Graphene Co-Doped by S and Se. Journal of Materials Chemistry A 2015, 3, 12810-12819.

(8) Fei, H.; Dong, J.; Arellano-Jiménez, M. J.; Ye, G.; Kim, N. D.; Samuel, E. L.; Peng, Z.; Zhu, Z.; Qin, F.; Bao, J., Atomic Cobalt on Nitrogen-Doped Graphene for Hydrogen Generation. Nature communications 2015, 6, 8668.

(9) Yang, Y.; Lun, Z.; Xia, G.; Zheng, F.; He, M.; Chen, Q., Non-Precious Alloy Encapsulated in Nitrogen-Doped Graphene Layers Derived from MOFs as an Active and Durable Hydrogen Evolution Reaction Catalyst. Energy & Environmental Science 2015, 8, 3563-3571.

(10) Zhang, K.; Zhao, Y.; Zhang, S.; Yu, H.; Chen, Y.; Gao, P.; Zhu, C., MoS2 Nanosheet/Mo2C-Embedded N-Doped Carbon Nanotubes: Synthesis and Electrocatalytic Hydrogen Evolution Performance. Journal of Materials Chemistry A 2014, 2, 18715-18719.

S1