electronic supplementary material

Carbon footprinting

Estimation of greenhouse gas emissions from sewer pipeline system

Daeseung Kyung1 • Dongwook Kim2 • Sora Yi3 • Wonyong Choi4 • Woojin Lee4

Received: 14 June 2016 / Accepted: 17 February 2017

© Springer-Verlag Berlin Heidelberg 2017

Responsible editor:

1Department of Advanced Technology, Land & Housing Institute, Korea Land & Housing Corporation, 539-99 Expo-ro, Yuseong-gu, Daejeon 34047, South Korea

2Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea

3Korea Environment Institute, 370 Sicheong-daero, Sejong 30147, South Korea

4School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea

Daeseung Kyung and Dongwook Kim contributed equally to this manuscript

* Woojin Lee

Contents

Type / Title / Page
Table S1 / The size of the pipelines and their proportions in the DMC system / S3
Table S2 / Pipe specifications for material type and diameter / S3
Table S3 / Annual electricity consumption at pump stations in DMC / S4
Table S4 / Statistics of the replaced pipeline length and manholes in DMC / S4
Table S5 / Detailed distribution of calculated GHG emissions from D300 PVC pipeline / S5
Table S6 / Comparison of emission factor and system boundary with previous studies / S5
Table S7 / Significant factors affecting GHG emissions at each life cycle stage based on the sensitivity analysis / S6
Table S8 / Effect of pipeline replacement ratio on GHG emissions at overall, MI, and EL stages / S6
Table S9 / Effect of pipe diameter change on GHG emissions at overall, MP, and OP stages / S7
Table S10 / Effect of biofilm reaction rate change on GHG emissions at overall and OP stages / S7
Fig. S1 / Map of DMC and location of WWTPs / S8
Fig. S2 / GHG emissions with different combination of pipe materials / S9
References / References / S10

Table S1 The size of the pipelines and their proportions in the DMC system

Installed pipe length (m)
150 mm / 300 mm / 450 mm / 700 mm / 900 mm
PVC / 5,881 / 3,597 / 973 / 0 / 0
PE / 29,853 / 123,230 / 45,913 / 17,196 / 2,292
Concrete / 0 / 444,989 / 615,810 / 467,807 / 167,190
Cast iron / 3,343 / 6,499 / 4,332 / 1,211 / 388
Total
(%) / 39,077
(2.0) / 578,315
(29.8) / 667,028
(34.4) / 486,214
(25.0) / 169,870
(8.8)

Table S2 Pipe specifications for material type and diameter

Internal diameter
(mm) / External diameter (mm) / Density
(kg∙m-3) / Mass
(kg∙m-1)
PVCa / 150 / 170 / 1,400 / 7.03
300 / 323 / 1,400 / 15.75
450 / 471 / 1,400 / 21.26
PEa / 150 / 176 / 900 / 5.99
300 / 338 / 900 / 17.13
450 / 508 / 900 / 39.27
700 / 788 / 900 / 92.55
900 / 1,012 / 900 / 151.36
Concreteb / 300 / 350 / 2,403 / 61.33
450 / 520 / 2,403 / 128.14
700 / 802 / 2,403 / 289.14
900 / 1,024 / 2,403 / 450.26
Cast ironc / 150 / 170 / 4,400 / 22.11
300 / 326 / 4,400 / 56.24
450 / 480 / 4,400 / 96.41
700 / 738 / 4,400 / 188.83
900 / 945 / 4,400 / 286.91

a(Mirai 2012), b(Dobong 2012), c(Shinan 2012)

Table S3 Annual electricity consumption at pump stations in DMC

2014 / Electricity Consumption (MWh)
Pump 1 / Pump 2 / Pump 3 / Pump 4 / Pump 5 / Pump 6 / Pump 7
January / 300 / 7,920 / 11,177 / 55,695 / 38,149 / 18,432 / 6,794
February / 242 / 9,180 / 11,748 / 54,954 / 39,892 / 19,776 / 6,643
March / 292 / 8,520 / 10,761 / 56,345 / 38,772 / 16,778 / 4,174
April / 482 / 9,780 / 12,060 / 58,042 / 42,232 / 18,847 / 4,941
May / 433 / 8,880 / 12,069 / 53,779 / 40,540 / 17,429 / 5,407
June / 596 / 10,101 / 12,794 / 53,415 / 42,224 / 18,161 / 5,474
July / 619 / 12,039 / 13,821 / 49,860 / 44,586 / 20,378 / 5,915
August / 749 / 12,015 / 13,794 / 45,446 / 45,770 / 22,015 / 6,553
September / 748 / 14,805 / 14,580 / 43,793 / 49,270 / 22,915 / 7,571
October / 692 / 9,720 / 12,395 / 56,341 / 42,098 / 18,670 / 6,424
November / 697 / 9,801 / 12,219 / 53,488 / 45,332 / 18,727 / 6,689
December / 580 / 8,529 / 10,834 / 54,744 / 43,323 / 14,378 / 5,800
Total / 1,722

Table S4 Statistics of the replaced pipeline length and manholes in DMC

Year / Replaced pipeline length (m) / Replaced Manholes (Unit)
2001 / 24,561 / 276
2002 / 11,569 / 451
2003 / 24,569 / 379
2004 / 20,248 / 533
2005 / 25,098 / 536
2006 / 11,223 / 715
2007 / 16,882 / 425
2008 / 10,285 / 428
2009 / 24,963 / 499
2010 / 23,473 / 2,427
Average / 19,287 / 667

Table S5 Detailed distribution of calculated GHG emissions from D300 PVC pipeline

Stage / GHG emissions (kgCO2eq∙m-1) / Percentage (%)
MP / 50.13 / 38.0
MT / 0.40 / 0.3
CO / 44.74 / 33.9
OP / 10.82 / 8.2
MI / 10.04 / 7.6
EL / 15.74 / 11.9

Table S6 Comparison of emission factors and system boundary with previous studies

This study / Venkatesh et al.a / CPSAb
Emission factor (EFEST)
(kgCO2eq∙m-1) / PVC / 121 / 220 / 47.4
PE / 111 / 153 / 37.5
Concrete / 96 / 37.4 / 31
Cast iron / 162 / 1,840 / N/Ac
System boundary / From material production to end of lifed / From material production to rehabilitation / From material production to construction
Database / Country / Korea / Norway / United Kingdom
Life Cycle Inventory / Korean LCI database and Ecoinvet database (v.2.2) / Ecoinvent database (v 2.01) / CPSA proprietary data about four factories and Plastics Europe DB

a(Venkatesh et al. 2009)
b(CPSA 2001)
cIn CPSA study, the emission factor for PP pipe was estimated, instead of PE pipe
dThe Emissions from operation stage are excluded

Table S7 Significant factors affecting GHG emissions at each life cycle stage based on the sensitivity analysis

Stage / Significant factor / Sensitivity (%)
MP / material of pipeline / 70.6
EFEST of pipeline / 23.7
MT / transportation distance (Dm) / 99.2
CO / EF of excavator (EFe) / 71.7
material of pipeline / 25.5
OP / diameter of pipeline / 59.8
biofilm reaction rate (Rateb) / 19.0
MI / transportation distance (Dm) / 40.2
pipe replacement ratio (ratiom) / 32.2
EL / pipe replacement ratio (ratiom) / 62.9
material of pipeline / 36.8

Table S8 Effect of pipeline replacement ratio on GHG emissions at overall, MI, and EL stages

Scenario / Overall
(tCO2eq∙yr-1) / MI and EL stages
(tCO2eq∙yr-1) / (%)
Current replacement ratio (0.199) / 6.64×103 / 6.97×102 / 10.49%
Enhancement of replacement ratio: -1% (0.197) / 6.63×103 / 6.89×102 / 10.40%
Enhancement of replacement ratio: -3% (0.193) / 6.61×103 / 6.76×102 / 10.21%
Enhancement of replacement ratio: -5% (0.189) / 6.58×103 / 6.59×102 / 10.02%
Enhancement of replacement ratio: -10% (0.179) / 6.57×103 / 6.26×102 / 9.54%
Enhancement of replacement ratio: -15% (0.169) / 6.53×103 / 5.92×102 / 9.06%

Table S9 Effect of pipe diameter on GHG emissions at overall, MP, and OP stages

Scenario / Total (tCO2eq∙yr-1) / MP stage / OP stage
(tCO2eq∙yr-1) / (%) / (tCO2eq∙yr-1) / (%)
D150: Construction of 228km pipeline with 150 mm diameter / 7.05×103 / 1.07×103 / 15.18 / 4.66×103 / 66.16
D300: Construction of 228km pipeline with 300 mm diameter / 7.28×103 / 1.11×103 / 15.25 / 4.83×103 / 66.26
D450: Construction of 228km pipeline with 450 mm diameter / 7.52×103 / 1.17×103 / 15.53 / 4.97×103 / 66.11
D700: Construction of 228km pipeline with 700 mm diameter / 7.99×103 / 1.29×103 / 16.20 / 5.23×103 / 65.47
D900: Construction of 228km pipeline with 900 mm diameter / 8.34×103 / 1.40×103 / 16.76 / 5.40×103 / 64.82

Table S10 Effect of biofilm reaction rate change on GHG emissions at overall and OP stages

Scenario / Total
(tCO2eq∙yr-1) / OP stage
(tCO2eq∙yr-1) / (%)
Current biofilm reaction rate (5.24×10-5) / 6.64×103 / 4.45×103 / 67.00
Reduction of biofilm reaction rate: -1% (5.12×10-5) / 6.58×103 / 4.37×103 / 66.36
Reduction of biofilm reaction rate: -2% (5.14×10-5) / 6.56×103 / 4.31×103 / 65.72
Reduction of biofilm reaction rate: -3% (5.08×10-5) / 6.52×103 / 4.24×103 / 65.08
Reduction of biofilm reaction rate: -4% (5.03×10-5) / 6.46×103 / 4.16×103 / 64.44
Reduction of biofilm reaction rate: -5% (4.98×10-5) / 6.40×103 / 4.09×103 / 63.80

Fig. S1 Map of DMC and location of WWTPs

Fig. S2 GHG emissions with different combination of pipe materials

*C (construction of 100% PVC pipe), P1 (100% PE pipe), P2 (100% concrete pipe), P3 (50% PVC and 50% PE pipe), P4 (50% PVC and 50% concrete pipe), and P5 (50% PE and 50% concrete pipe)

References

CPSA (2001) Environmental assessment of UK sewer systems Groundbreaking Research, in: Hobson, J. (Ed.). Department of Trade and Industry

Dobong (2012) Commercial catalogue. Dobong concrete Co., Dobong concrete Co.

Mirai (2012) Commercial catalogue. Mirai.

Shinan (2012) Commercial catalogue. Shinan Cast Iorn Co., South Korea.

Venkatesh G, Hammervold J, Brattebo H (2009) Combined MFA-LCA for Analysis of Wastewater Pipeline Networks Case Study of Oslo, Norway. J Ind Ecol 13:532-550

S2