ECE421/521 POWER SYSTEM ANALYSIS

Homework #3

2.7a / 2.7b / 2.7c / 2.8 / 2.9 / 2.10a / 2.10b / 2.14a / 2.14b / 2.15a / 2.15b / 2.16a / 2.16b / Total
521 / 5’ / 5’ / 5’ / 10’ / 10’ / 5’ / 5’ / 10’ / 10’ / 10’ / 10’ / 10’ / 5’ / 100’
421 / 10’ / 10’ / 10’ / 10’ / 10’ / 10’ / 10’ / 5’ / 5’ / 10’ / 10’ / 10’ / 10’ / 100’+20’

2.7(a)

(1’/2’)

(1’/2’)

(1’/2’)

(1’/2’)

(1’/2’)

(b)

(1’/2’)

(2’/4’)

lagging (2’/4’)

(c)

(1’/2’)

(1’/2’)

(1’/2’)

(1’/2’)

(1’/2’)

2.8

(1’/1’)

(1’/1’)

(2’/2’)

(2’/2’)

From the above results, is positive and is negative, machine 1 is delivering 28kW real power and machine 2 is receiving 25kW real power.is negative and is positive, machine 1 is receiving 21kvar reactive power and machine 2 is delivering 33kvar reactive power. (2’/2’)

(2’/2’)

2.9

Run the following codes, (2’/2’)

%HW3 2.9

E1 = 120;

a1 = -5;

E2 = 100;

a2 = 0;

R = 1;

X = 7;

Z = R +1i*X;

E1 = (0.75*E1:1:E1)';

k = length(E1);

a1 = ones(k,1)*a1;

a1r = a1*pi/180;

a2 = ones(k,1)*a2;

a2r = a2*pi/180;

V1 = E1.*cos(a1r) + 1i*E1.*sin(a1r);

V2 = E2.*cos(a2r) + 1i*E2.*sin(a1r);

I12 = (V1 - V2)./Z;

I21 = -I12;

S1 = V1.*conj(I12); P1 = real(S1); Q1 = imag(S1);

S2 = V2.*conj(I21); P2 = real(S2); Q2 = imag(S2);

SL = S1+S2; PL = real(SL); QL = imag(SL);

Result1 = [E1, Q1, Q2, QL];

disp(' |V| 1 Q-1 Q-2 Q-L ')

disp(Result1)

plot(E1, Q1, E1, Q2, E1, QL)

xlabel('Source #1 Voltage Magnitude, V')

ylabel('Q, var')

text(115, 300, 'Q1'), text(115, -250, 'Q2'), text(115, 0, 'QL')

The result is, (2’/2’)

ECE521HW3_2_9

|V| 1 Q-1 Q-2 Q-L

90.0000 -130.7167 145.7984 15.0817

91.0000 -119.4291 131.7447 12.3156

92.0000 -107.8616 117.6910 9.8294

93.0000 -96.0140 103.6372 7.6233

94.0000 -83.8864 89.5835 5.6971

95.0000 -71.4788 75.5298 4.0510

96.0000 -58.7912 61.4760 2.6848

97.0000 -45.8236 47.4223 1.5987

98.0000 -32.5760 33.3686 0.7926

99.0000 -19.0484 19.3148 0.2664

100.0000 -5.2408 5.2611 0.0203

101.0000 8.8468 -8.7926 0.0541

102.0000 23.2144 -22.8464 0.3680

103.0000 37.8620 -36.9001 0.9618

104.0000 52.7895 -50.9538 1.8357

105.0000 67.9971 -65.0076 2.9896

106.0000 83.4847 -79.0613 4.4234

107.0000 99.2523 -93.1151 6.1373

108.0000 115.2999 -107.1688 8.1311

109.0000 131.6275 -121.2225 10.4050

110.0000 148.2351 -135.2763 12.9588

111.0000 165.1227 -149.3300 15.7927

112.0000 182.2903 -163.3837 18.9066

113.0000 199.7379 -177.4375 22.3004

114.0000 217.4655 -191.4912 25.9743

115.0000 235.4731 -205.5449 29.9281

116.0000 253.7606 -219.5987 34.1620

117.0000 272.3282 -233.6524 38.6758

118.0000 291.1758 -247.7061 43.4697

119.0000 310.3034 -261.7599 48.5436

120.0000 329.7110 -275.8136 53.8974

(3’/3’)

As the voltage magnitude of increase, the reactive power delivered from machine 1 increases and the reactive power delivered from machine 2 decreases. As, . So, the reactive power flows from higher terminal voltage to lower terminal voltage. (3’/3’)

2.10(a)

Run the following code, (1’/2’)

%HW3 2.10

wt = 0:0.05:2*pi;

van = 2500*cos(wt);

vbn = 2500*cos(wt-120*pi/180);

vcn = 2500*cos(wt-240*pi/180);

Z = 250;

delta = 36.87*pi/180;

ian = 2500*cos(wt - delta)/Z;

ibn = 2500*cos(wt-120*pi/180-delta)/Z;

icn = 2500*cos(wt-240*pi/180-delta)/Z;

pa = van.*ian/1000;

pb = vbn.*ibn/1000;

pc = vcn.*icn/1000;

p = pa+pb+pc;

plot(wt,pa,'*',wt,pb,'-',wt,pc,'+',wt,p,'o')

xlabel('Time, s')

ylabel('instantaneous power, kW')

text(0.3, 25, 'pa'), text(2.4, 25, 'pb')

text(4.5, 25, 'pc'), text(6, 28, 'pa+pb+pc')

(2’/4’)

The plot shows that pc lags pb 120 degree and pb lags pa 120 degree. The sum of them is a constant value 30kVA. (2’/4’)

(b)

(1’/2’)

(2’/4’)

The result agrees to the total power obtained in (a). (2’/4’)

2.14(a)

(2’/1’)

(2’/1’)

(2’/1’)

(1’/0.5’)

Total system kW:

Total system kvar:

System PF: (1’/0.5’)

Supply current per phase: (2’/1’)

(b)

If the capacitor bank is switched off,

(4’/2’)

New system PF: lagging (2’/1’)

New supply current per phase: (4’/2’)

2.15(a)

(2’/2’)

(2’/2’)

(2’/2’)

(1’/1’)

System PF: lagging (1’/1’)

Supply current per phase: (2’/2’)

(b)

To improve the overall PF from 0.6 to 0.8,

The new total kvar is: (1’/1’)

The kvar been compensated per phase: (1’/1’)

(2’/2’)

(2’/2’)

New line current: (4’/4’)

2.16(a)

The Δ-connected resistive load is transformed into equivalent Y-connection,

(1’/1’)

The phase voltage is,

(1’/1’)

The total impedance in single phase is,

(2’/2’)

The current per phase is,

(2’/2’)

The three phase power supplied is,

(2’/2’)

(b)

The line-to-neutral voltage of phase a at the combined load terminals is,

(3’/6’)

The line-to-line voltage of phase a at the combined load terminals is,

(2’/4’)