EAS 6140 – Thermodynamics of Atmospheres and Oceans

Practice Exam II

A parcel of air consisting of dry air, water vapor, and condensed liquid water is rising, undergoing to reversible saturated adiabatic expansion. The air parcel is a closed thermodynamic system (i.e. no mass enters or leaves the system). As the parcel rises from p1 to p2 (p2<p1), compare the thermodynamic state of the parcel at p2 with its state at p1 (i.e., state whether the following thermodynamic variables increase, decrease, or remain the same as a result of the sinking):

1. T (temperature)decreases

2. wv (water vapor mixing ratio)decrease

3. wl (liquid water mixing ratio)increase

4. H (relative humidity)same

5. e (vapor pressure) decrease

6. TD (dewpoint temperature)decrease

7.  (potential temperature)decreases

8. e (equivalent potential temperature)same

A cloud is observed to have an amount of condensed liquid water corresponding to the adiabatic liquid water content. State how the liquid water content would change (increase, decrease, remain the same) if each of the following processes were included:

9. lateral entrainment of environmental airdecrease

10. precipitationdecrease

11. radiative coolingincrease

12. glaciationdecrease

13-14. Which variables are conserved when unsaturated air is lifted (circle all that apply)

a) Potential temperature

b) Mixing ratio

c) Saturation mixing ratio

d) Equivalent potential temperature

14-15. Which variables are conserved when saturated air is lifted (circle all that apply)

a) Potential temperature

b) Mixing ratio

c) Saturation mixing ratio

d) Equivalent potential temperature

16-17. Wet bulb temperatures are often measured by wrapping the bulb of a thermometer with an absorbent material (e.g. cotton cloth) thoroughly misted with the clean water. The lowest temperature recorded while the cloth is still wet is the wet bulb water. Supposed the water is salty (not pure). What would happen to the measured web bulb temperature? Would it increase, decrease, remain the same? Explain.

Tw would be higher (ie closer to the dry bulb temperature). Salt water is harder to evaporate than fresh water (See section 4.3). At relative humidities below 100%, water evaporates from the bulb which cools the bulb below the dry bulb/ambient temperature. If one bulb is 100% pure water and the other 99% pure water the rate of evaporation rate would be less. This is the same with the case for salty water.

The number of CCN per unit volume of air that have critical supersaturation values less than (S–1) for a maritime airmass might be NCCN=50 (S-1)0.4whereas a typical continental (non-urban) spectrum might be NCCN =4000 (S-1)0.9.

See section 5.2 through 5.4

Recall N = ∫ n(r) dr ; so that the size distribution determines N.

For a given updraft speed, which spectrum (maritime or continental) will result in:

18. the larger cloud drop concentration continental

19. the larger maximum supersaturation maritime

20. the smaller mean drop size continental

21. the larger dispersion (spread) of drop sizescontinental

In the following diagram, assume that a parcel of air is lifted to point A mechanically and reversibly (i.e., no precipitation or mixing with the environment). In the diagram below, state at each level indicated whether the acceleration (du/dt) and vertical velocity (u) due to buoyancy (not the mechanical lifting) are equal to, greater, or less than zero.) ------represents the temperature profile of the environment, while ______represents the path of a parcel.

udu/dt

inside LNB22. less than zero23. negative

INSIDE 24. greater than zero 25. positive

CAPE

@LFC26. equal to zero27. zero

Between LFC 28.less than zero29. negative

& LCL

* Recall to solve this problem look at temperature values if parcel is warmer than the environment there will be upward motion due to buoyant forces if parcel is colder than environment there will be downward motion due to buoyant forces if parcel is equal to environment there should be no buoyant force.

30-33. The expression for liquid water path is given by

Derive an expression for the liquid water path between p1 and p2 for a situation in which the liquid water mixing ratio increases linearly with height between these two levels, wl=0 at zb and wl=W at zt.

See Worksheet 16 and change accordingly writing liquid water path in terms of dp instead of dz use hydrostatic approximation to substitute for dz.

34-37. The Kelvin equation for the homogeneous ice nucleation for a liquid drop is written as

where Si is the saturation ratio with respect to ice. Show that an alternative form of the Kelvin equation may be written as

Where substituting gives,

38-41. Starting from the first law of thermodynamics for a saturated adiabatic process, derive an expression for the adiabatic liquid water content as a function of height above cloud base.

42-46. If the production of saturation occurs via isobaric cooling rather than by adiabatic cooling, then

(5.39)

where dT/dt is the isobaric cooling rate resulting from radiative cooling or other isobaric processes. Determine expressions for the terms A3 and A4 .

Assuming ascent without condensation, term A3 can be derived using the following relation, see pg 146-147

and