Welcometo
Vibrationdata
AcousticsShockVibrationSignalProcessingMarch2004Newsletter
1
Aloha
IrecentlyacquiredaMarantzcassette recorder,whichIamusingtotakesomefield recordings. Beginningwiththisissue,Iwillbe presentingsomeofthisdata.
Theimageontherightisawindchimeinmy backyard. Itconsistsoffivehollowtubesthat behaveasfree-freebeamsintheengineering sense. Thewindchimesproduceadelightful melodyintheEscale,althoughthepresence ofadditionalfrequenciesrenderstheresulting soundassomewhatatonal.Thefirstarticle providesasoundandvibrationanalysisofthe chimes.
Thesecondarticlegivesasoundanalysisofa thunderstormthatoccurredovermyhometown earlierthismonth. Thestormwaswelcomed given that Arizona has had a drought for severalyears.
Ihopeyouenjoythearticles.Asalways,Iappreciateyourfeedback.
Sincerely,
FeatureArticles
1
WindChimeSoundVibration page2
1
TomIrvine
Email:
ThunderstormSounds page9
1
1
WindChimeSoundVibration
byTom Irvine
History
Anumberofculturesthroughout history haveenjoyedthepleasingsoundsofwind bellsandwindchimes. Widespreaduseof windchimescanbetracedtoancientChina.
TheChinesebecameexcellentmetal workers,particularlyinrefiningiron,around theyear1000B.C. Theybeganproducing windbells atthistimeforritualceremonies.
TheuseofwindchimesspreadtoJapan around400B.C. TheJapaneseusedthese chimesinBuddhisttemples aswellasin homegardens.
TheJapaneseproducedabronzewindbell calleddotaku.Theylaterdevelopeda smallerandlighterwindchimecalledthe furin,whichweremadefromglass,metalor ceramics. Thefurinchimeswereoften handpainted.
Thewindchimesenjoyedbywestern culturestodayaretypicallymadefromrods ofvaryinglengthssuspendedfromarack. Thisdesignbecamepopularinthe19thcentury. Thisdesignispartlyduetoa musicianwhosoughttoimprovethetoneofthe bells he played in an orchestra. EntrepreneurialVictorians,rememberingthe Japanesefurin,popularizedthisdesign.
Author’sWindChime
Thewindchimemodelis“Cavernous Echoes”byMajestyBells,asshownonthe coverpage. The vendor’s brochure states that this is a five note wind chime hand- tuned to the scale of E. Thematerialis anodizedaluminum. Theouterdiameteris1.25inch. Thechimesarehollow,withawallthicknessof3/32inch. Theboundaryconditionisessentiallyfree-freeforvibrationcalculations. Theconditionisopen-openforacousticfrequency.
Thechimeshavethreewoodenparts,which arefromtoptobottom:thehead,thestriker, andthewindcatcher.
Experiment
Assume that the wind chimes have three types of possible responses as shown in Table1.Furthermore,eachtypehashigher modes. One of the objectives is to determine which modes type or types producethechimespleasingsound.The natural frequencies are calculated using textbookformulas.
Inaddition,thechimesalsohavearing frequency corresponding to a breathing mode. Thisfrequencyis50,540Hzforeach chime,sincethechimeshaveacommon diameter. Thisfrequencyiswellabovethe upperfrequencylimitof humanhearing, however.
Thewindchimeswereexcitedseparately usingthestriker.Theresultingresponses wereduetothebendingmodesineach case. Note that the bending mode is the only type in Table 1 that has non-integer harmonics, however. Inthis sense, wind chimesareatonal.
FrequencyResponse Data
TheresponsedataissummarizedinTable
2. Themusicalnoteisthenearestnoteto themeasuredfrequency.
Thesequence:E,F#,G#,A,B,represents thefirstfivetonesoftheEmajorscale. The complete E major scale contains this sequenceplusC#andD#.
The second natural frequency of each chimerepresentsanoteintheEscale,as showninTable2.
1
Table1. WindChimeFundamentalFrequenciesChime / Length
(inch) / Vibration
Bending
(Hz) / Vibration
Longitudinal
(Hz) / Acoustical
Longitudinal
(Hz)
1 / 34.69 / 238 / 2832 / 194
2 / 32.56 / 271 / 3017 / 207
3 / 30.69 / 305 / 3201 / 219
4 / 29.94 / 320 / 3281 / 225
5 / 28.19 / 361 / 3485 / 238
Table2. MeasuredFrequenciesandNearestMusicalNotes
Chime1 / Chime2 / Chime3 / Chime4 / Chime5
Freq
(Hz) / Note / Freq(Hz) / Note / Freq(Hz) / Note / Freq(Hz) / Note / Freq(Hz) / Note
244 / B / 278 / C / 312 / D / 330 / E / 371 / F#
663 / E / 753 / F# / 850 / G# / 890 / A / 1000 / B
1272 / D# / 1441 / F# / 1625 / G# / 1700 / G# / 3031 / F#
2050 / C / 2314 / D / 2600 / E / 2712 / D# / 4351 / C#
1
Waterfallplotsforeachofthefivechimes aregiveninFigures1through5,respectively.
TheverticalaxisistheFouriertransform magnitude, which has an arbitrary scale factor. Eachaxisscaleislinear.
The corresponding frequencies for each chimearegivenintheaccompanyingtables. The calculated frequency is the bending frequency. Themeasuredfrequencieshave reasonably good agreement for the calculatedfrequencyforeachchime.
Thewaterfallplotsshowtherelative differenceinamplitudebetweenthevarious naturalfrequencieswithineachchime.
Theextenttowhicheachmodeisexcited dependsinpartontheimpactlocationofthe strikeragainstthechime.
Whetherthemanufacturerconsideredthecomplexityofnodallineswhendesigningthe strikerpositionisunclear.
Thewaterfallplotsalsoshowhowthe reverberationtimevariesbetweenthenatural frequencies. Thefundamentalfrequencyis thefrequencywiththelongestreverberation timeforeachchime.
Thepeakamplituderesponse,however,may occuratthesecondorthirdnaturalfrequency foragivenchime.
BendingMode Shapes
Ageometrymodelofchime1isshowninFigure6.
Thefirstthroughthirdbendingmodeshapes areshowninFigures7through9,respectively. Themodeshapesaregreatly exaggerated,withanarbitraryscalefactor.
1
Figure1. Chime1SoundPressureWaterfallPlot
Table3. Chime1 NaturalFrequenciesMode / Calculated
(Hz) / Measured
(Hz) / MusicalNote
1 / 238 / 244 / B
2 / 657 / 663 / E
3 / 1288 / 1272 / D#
4 / 2127 / 2050 / C
Thepeakamplituderesponseoccursatthethirdnaturalfrequency. Thefundamentalfrequencyhasamuchlongerreverberationtime,however.
1
Figure2. Chime2SoundPressureWaterfallPlot
Table4. Chime2 NaturalFrequenciesMode / Calculated
(Hz) / Measured
(Hz) / MusicalNote
1 / 271 / 278 / C
2 / 746 / 753 / F#
3 / 1462 / 1441 / F#
4 / 2414 / 2314 / D
Thefirstandsecondnaturalfrequenciesdominatetheresponse.
Figure3. Chime3SoundPressureWaterfallPlot
Table5. Chime3NaturalFrequenciesMode / Calculated
(Hz) / Measured
(Hz) / MusicalNote
1 / 305 / 312 / D
2 / 840 / 850 / G#
3 / 1646 / 1625 / G#
4 / 2718 / 2600 / E
Thesecondnaturalfrequencyclearlyhasthehighestamplituderesponse.
Figure4. Chime4SoundPressureWaterfallPlot
Table6. Chime4NaturalFrequenciesMode / Calculated
(Hz) / Measured
(Hz) / MusicalNote
1 / 320 / 330 / E
2 / 882 / 890 / A
3 / 1729 / 1700 / G#
4 / 2855 / 2712 / D#
Thesecondnaturalfrequencyclearlyhasthehighestamplituderesponse.
Figure5. Chime5SoundPressureWaterfallPlot
Table7. Chime5NaturalFrequenciesMode / Calculated
(Hz) / Measured
(Hz) / MusicalNote
1 / 361 / 371 / F#
2 / 995 / 1000 / B
3 / 1950 / 3031 / F#
4 / 3221 / 4351 / C#
Thesecondnaturalfrequencyclearlyhasthehighestamplituderesponse,aswasthecasefortheprevioustwochimes.
Figure6. Chime1,UndeformedModel
Figure7. Chime1,FirstBendingMode
1
Figure8. Chime1,SecondBendingMode
Figure9. Chime1,ThirdBendingMode
ThunderstormSounds
Figure1. HailontheAuthor’sFrontPorch
1
Introduction
Lightningisadischargeofelectronsfrom cloudtocloud,orfromcloudtoground. Theelectrons strike adjacent air molecules. These violent collisions produceheatwhichrapidlyexpandsthe surroundingair. Theairtemperature maybenear50,000degreesFahrenheit
Furthermore, the air molecule expansion rate is greater than the speed of sound. The air molecules expand and then contract. This action produces shock waves, which are heard as a loud thunderingnoise. Theshockwavesmay beconsideredasasonicboomeffect.
Nearbylightningstrikesproducesthunder withaloudbutshortcrackingnoise.
Distantstrikesprovokealong,low rumble.For these strikes, the sound wavesreflectofftheground,tallbuildings,mountains,andclouds.Thisseriesofreflectionscausesarumblingsound.
Additionalrumblingnoiseoccursbecause soundisgeneratedfromallpointsalonga lightningbolt,whichmaybeaslongas1 mile, or 1.6 km. The sound waves originatingfromvariouspointsmayreach the observer at different times. The resultingdelaysdependinpartonthe geometryofthebolt. Thesoundfieldis furthercomplicatedbyanyforksinthe lightning.
Alllightningstrikesgeneratesound. The strikemaybesofaraway,however,that thesoundisattenuatedtoaninaudible levelbeforeitreachesanobserver.
Thunder Data
AbriefthunderandhailstormoccurredinMesa,Arizona,at6:30pm,onMarch4,2004.AwaterfallplotofarumblingthunderburstfromthisstormisshowninFigure2. Theamplitudeislinear,butthe scalefactorisarbitrary.
1
Figure2. ThunderRumbling,SoundPressureWaterfallPlot
The waterfall plot shows that energy at lower frequencies tends to have a longer reverberationtimethantheenergyathigherfrequencies.
SOUNDPRESSURESPECTRALMAGNITUDE THUNDERRUMBLING
0.08
0.06
0.04
0.02
0
101001000
FREQUENCY(Hz)
Figure3. ThunderSoundPressure
1
ThespectralfunctioninFigure3coversthecompletedurationofthethunder rumbling.Notethattherecordingsystemhadsomeroll-offbelow50Hz. Asignificantamountofthesoundoutputmayhavebeeninfrasound,below20Hz
which is the lowerfrequencylimit ofhuman hearing.Thehighestpeak occursat76Hz. Thesignificanceofthefrequencyremainsanareaforfuture investigation.
1
SOUNDPRESSURESPECTRALMAGNITUDE-HAIL
250
200
150
100
50
0
1010010002000
FREQUENCY(Hz)
Figure4. HailSoundSpectra
1
HailData
Thethunderandlightningwerefollowed byabriefhailstorm,showninFigure1. Thehailstoneswereaboutthesizeof marbles. Asoundspectralfunctionof thehailstormisshowninFigure4. The amplitudeisagainlinear,butthescale factorisarbitrary.
Thespectralpeaksbetween100Hzand300HzinFigure4maybelargelydueto theeffectofthehailstrikingthesheetmetalsurfacesoftheauthor’s1993Ford Taurus,which wasparkedinthe driveway.
1
1