The History Of The Function Concept
In The Intended High School Curriculum Over The Past Century:
What Has Changed And What Has Remained The Same
In The Roles That Functions Are To Play?
Lisa Sheehy
July 1996
The National Council of Teachers of Mathematics (NCTM) proposed in the Curriculum and Evaluation Standards for School Mathematics that "one of the central themes of mathematics is the study of patterns and functions" (NCTM, 1989, p.98). In 1991, Froelich, Bartkovich, & Foerester made the more poignant statements "the concept of function is probably the single most important idea in mathematics" and "the idea of function is inherent in many parts of today's algebra and geometry programs" (p.1). It is clear that these proponents of the function concept view function as both central and essential in today's mathematics curriculum. The acceptance of the function concept as a crucial topic of study for the mathematics students of the nineties brings to mind questions of past views of the importance of the function concept and its inclusion in the high school curriculum. Are the recommendations for mathematics curriculum as we approach the end of the 20th century so radically different than those throughout the century? As I "trace the history of the function concept in the intended high school curriculum over the past century," I will show that not only are the recommendations for today not radically different from those of the past, but they are, in fact, strikingly similar to those made at the onset of the twentieth century.
So, where has function concept been in the intended curriculum over the past century? First the question "how does one define the intended high school curriculum in the United States?" needs to be addressed. Romberg (1992) reminds us
As a consequence of shared state and local control and shared state and local taxes to support schools, there are vast differences in the quality of programs, facilities, staff, and teachers both across and within states. There is no national curriculum, no national set of standards for the licensing or retention of teachers, no common policies for student assessment of progress or admission to higher education, and so forth. (p. 763)
In the absence of a national curriculum or imposed curriculum standards, the problem of defining an intended curriculum begins with the question "intended by whom?" Over the past century, college professors, pure mathematicians, politicians, teachers, psychologists, sociologists, and a variety of educational organizations have attempted to influence school mathematics curriculum. I will discuss how the function concept was presented in some of the most defining and influential curriculum recommendations throughout the century. This brief history of curriculum recommendations will be coupled with a discussion of the development of the function concept in the field of mathematics.
The 1890's began with a general dissatisfaction of secondary education and a call for a unified mathematics curriculum. As reported by Osborne & Crosswhite (1970), the National Education Association (NEA) appointed the Committee of Ten in 1892 to study secondary school problems and to provide a national force for standardizing the secondary school curriculum. The subcommittee of the Committee of Ten appointed to examine mathematics made no reference to the concept of function as a unifying theme. They did, however, promote the concept of equation as a unifying theme. Similarly, recommendations from the NEA College Entrance Requirements Committee and the American Mathematical Society (AMS) made little mention of the concept of function and emphasized equation as the important concept in Algebra.
In contrast to the above recommendations, Felix Klein ( a professor of mathematics in the University of Gottingen in Germany) gave an address at the International Congress of Mathematicians in Chicago in 1893. It was in this address that Klein first emphasized the vital importance of the function concept in school mathematics to teachers. In the years following this address, Klein began to develop and expand upon this idea of functional mathematics. In 1908, at the International Conference of Mathematicians in Rome, Klein claimed that the function concept "was, not simply a mathematical method, but the heart and soul of mathematical thinking "(Hamley, 1934, p. 53). Hamley (1934) claimed "the idea that the function concept should be made the central theme of school mathematics may be said to have originated with Klein" (p. 49). In E. H. Moore's presidential address to the American Mathematical Society in 1902 and in later writings about graphical representations, he echoed Klein's idea of function as a dependency relation.
Influenced by Moore, D. E. Smith and E. R. Hendricks argued for the elaboration of the function concept in the American school curriculum (see Hamley, 1934). According to the Mathematical Association of America (1923), in 1916 Hendricks appointed the National Committee on Mathematical Requirements(NCMR), of which D. E. Smith was an original member. The purpose of this committee was to give "national expression to the movement for reform in the teaching of mathematics" (NCMR, 1923). In 1923 the NCMR published a landmark report. Chapter seven of the report, entitled "The Function Concept in Secondary School Mathematics," was "recognized as the first authoritative statement of the case for functional thinking to be found in American mathematical literature" (Hamley, 1934, p. 78). The 1923 Report proposed that "methods for organization are being experimentally perfected whereby teachers will be enable to present much of this material more effectively in combined courses unified by one or more such central ideas as functionality and graphic representations" (NCMR, 1923, p. 38). From the above review of recommendations, it is evident that function was a topic in school mathematics that was receiving increased attention during the early part of the twentieth century.
But why was the study of function at the high school level becoming increasingly important? Why was there an apparent need to reform school mathematics curriculum with function as a unifying theme? Perhaps we should examine what was happening in the field of mathematics in relation to the function concept. From 1720-1820 a new subject, Analysis, began to take from in the field of mathematics in which the concept of function was central. Prior to this, Calculus seemed to be the topic that most affected how function was defined and applied. According to Kleiner (1989), the problem was that the concept was in a "state of flux." Was function to be represented geometrically (in the form of a curve)? algebraically (in the form of a formula)? or logically (in the form of a definition)?
Was there any agreement? It was Dirichlet's 1829 definition of function that was most widely accepted at the turn of the this century (Kleiner, 1989 and Malik, 1980). Dirichlet defined function as follows:
y is a function of a variable x defined on the interval a<x<b, if to every value of the variable x in this interval there corresponds a definite value of the variable y. Also, it is irrelevant in what way this correspondence is established. (cited in Kleiner, 1989, p. 291)
From 1900-1920, concepts such as metric space, topological space, Hilbert space, and Banach space were introduced. These developments led to new definitions of function based on arbitrary sets, not just real numbers. In 1917, Caratherdory defined a function as a rule of correspondence from a set A to real numbers (Malik, 1980, p. 491).
Back in American school mathematics there was still tension. There were still those supporting the concept of function as a unifying theme in mathematics education and a unified approach to mathematics curriculum. For example, David Smith (1926) wrote in the first National Council of Teachers of Mathematics (NCTM) Yearbook "much has been written of the advance in appreciation of the function concept in recent years...It has of late come to be looked on as a kind a unifying principle running through all parts of algebra" (p.26). There were also those who are sharply criticized current trends and objectives in mathematics education. Some were even questioning the place of mathematics in general education. During the 1930's two studies of secondary mathematics curriculum were commissioned to address this very issue. One was a report of the Progressive Education Association (PEA) Committee on the Functionality of Mathematics in General Education and the second was a report from the Joint Commission of the MAA and NCTM. The PEA committee selected nine topics they felt were particularly applicable to life, one of which was functions. They suggested "the student should acquire understandings of the concept of variables, dependency, and the generality and power of the function concept" (Osborne & Crosswhite, 1970, p. 226). The Joint Commission formulated its recommendations around seven fields of mathematics which included graphical representation, elementary analysis and relational thinking (Osborne & Crosswhite, 1970). Both committees appeared to be upholding the idea that function was an important concept in secondary mathematics.
As the study of higher level mathematics became more and more abstract, so did the definition of function. The developing field of abstract algebra and topology gave way to more set-theoretic definitions of function. In response to the more modern definitions and applications of the function concept, Schaaf stated
The keynote of Western culture is the function concept, a notion not even remotely hinted at by any earlier culture. And the function concept is anything but an extension or elaboration of previous number concepts - it is rather a complete emancipation from such notions. (cited in Tall, 1992, p.497).
This so called emancipation from the old ideas was evident as the field of mathematics rapidly became more abstract. Bourbaki, a well known proponent of abstract algebra introduced a set definition of function that would eventually affect school mathematics curriculum for many years. In 1939, Bourbaki offered the following definition of function:
Let E and F be two sets, which may or may not be distinct. A relation between a variable element x of E and a variable element y of F is called a functional relation in y if, for all x in E, there exists a unique y in F which is in the given relation with x.
We give the name of function to the operation which in this way associates with every element x in E the element y in F which is in the given relation x; y is said to be the value of the function at the element x, and the function is said to be determined by the given functional relation. Two equivalent functional relations determine the same function. (cited in Kleiner, 1989, p.299)
Bourbaki also gave the well-known and textbook published definition of a function as a set of ordered pairs (the product of E x F). So as the study of mathematics and the definition of function at the college level were becoming increasingly more abstract, what was happening at the secondary level?
Markovits, Eylon, & Bruckheimer (1986) felt that the new formal definition of function was far too abstract for high school students, and yet they noted its influence was in fact felt at the school level. What happened over time was that a gap was widening between university mathematics and school mathematics (see Howson, Keitel, & Kilpatrick, 1981). There was a "new math" at the university level and high school graduates were not prepared to study it. College professors felt the need to take action. In the early 1950's, the Committee on School Mathematics (the UICSM) set up a project at the University of Illinois. As stated by Howson, et al. (1981), "it aimed to improve the teaching of mathematics to pre-college students, for the benefit of universities, so as to help overcome the gap between school mathematics and that at the university, and to secure a better qualified new generation of mathematicians"(p.133). In describing the courses that had been developed by the UICSM, the administrative head of the project, Max Beberman (1958), echoed the project's emphasis on precise language as he made the following observations about the treatment of function:
The semantics notion that a noun ought to have a referent has led us to give precise descriptions of relations and functions. The customary vagueness that surrounds the word 'function' in conventional courses vanishes when a student realizes that a function is an entity, a set of ordered pairs in which no two elements have the same first component. ( p. 22)
Other projects, textbooks, and recommendations in the late 50's and 60's echoed the emphasis of precise definitions which were set theoretic in nature. For example, the largest and most well known project of the new math era, the School Mathematics Study Group (see Howson, et al., 1981), was responsible for the authorship of a series of widely circulated and adopted textbooks written in the spirit of the new math movement. SMSG (1960) defined function as follows:
Let A and B be sets and let there be a given rule which assigns exactly one member to B to each member of A. The rule, together with the set A, is said to be a function and the set A is said to be its domain. The set of all members of B actually assigned to members of A by the rule is said to be the range of the function.
The above definition strongly resembles that of Bourbaki. It had taken twenty years, but the "abstractness" of the college mathematicians' definition of function was making its way into high school classrooms.
Because the definitions had become more abstract and precise, one might assume that no one continued to support the argument that function be a unifying theme. Not true. In fact, a priority of the new math movement was to provide unifying themes for mathematics in terms of an overall structure. The goal was for students to understand how different skills and definitions were connected in the overall structure of mathematics. In the 1959 the Commission on Mathematics of the College Entrance Examination Board published a report in which they described a nine point program for school mathematics reform in light of the new math movement. The fourth point was a call for the judicious use of unifying ideas, one of which was function. Kleiner, Moore, and peers had not been contradicted. As a matter of fact, May & Van Engen (1959) described the new definition of function as unifying all previous ideas of function. They sated