Tissue, specific cell types and cell lines that fulfil expression criteria
Type / Tissue: cell type (cell lines) / Ref
Adipose / Adipose / [1, 2]
Bladder / Bladder / [1, 2]
Blood / Dendritic / [3–8]
Eosinophils / [5, 6]
Granulocyte / [9]
Leukocyte (HL-60, F-36P) / [3, 10–12]
Lymphocyte: natural killer (NK), CD8+, CD4+ (Jurkat, CLL, LCL) / [1–3, 8, 10, 13–19]
Macrophage (dU937) / [1, 2, 10, 20–23]
Mast / [24, 25]
Megakaryocyte (CMK-86, M-07e, UT7-Epo) / [1, 2]
Monocyte / [1–3, 8, 14–17, 22, 26–29]
Monocyte-derived dendritic / [10, 30, 31]
Neutrophils / [1, 2, 14–17, 32]
Peripheral blood mononuclear / [18]
Platelet / [1, 2, 14–17, 32–35]
Bone / cartilage / Bone / [1, 2]
Cartilage / [1, 2]
Chondrocyte (C2OA4, HAC60) / [1, 2]
Osteosarcoma (HOS, MG63, SaOS-2) / [1, 2, 36, 37]
Brain / Astrocyte (1321N1,CCF-STTG1) / [1–3]
Brain / [1, 2, 38]
Glia (Hs-683, C13, H4) / [1, 2]
Neuroblastoma (IMR32-, IMR32+, SH-SY-5Y-, SH-SY-5Y+) / [1, 2]
Development / Embryo (HEK-293) / [1, 2, 38–40]
Embryo from Xenopus / [41]
Embryo lung fibroblast (MRC-9) / [1, 2]
Placenta / [1, 2, 42–44]
Stem cell: CD34+, mesenchymal / [14–17, 45]
Teratoma (NT-2) / [1, 2]
Endocrine / Thyrocyte / [46]
Endothelium / Endothelium: ± idiopathic pulmonary arterial hypertension, umbilical vein / aortic, cerebral (hCMEC-D3), coronary artery (HCAEC) / [1, 2, 14–17, 47–52]
Epithelium / Epithelium: (Calu-6, HeLa), airway (NuLi-1, CuFi-1), bladder, breast (MDA-MB-468), colon (Caco-2, HCT8), corneal, middle ear / nose, pancreas (PANC-1, CFPAC-1, CAPAN-1), prostate (DU145, PC-3, PNT-2, LNCaP), bile duct (H69, Mz-ChA-1) / [1, 2, 23, 33–35, 38, 40, 53–60]
Epithelium: (MDCK-D1) and pancreatic duct from dog / [61–64]
Eye / Trabecular meshwork (HTM-3) / [65]
Heart / Heart / [1, 2, 66, 67]
Intestine / Intestine, enterochromaffin cell (BON) / [1, 2, 68]
Joint / Synoviocyte / [69]
Kidney / Fibroblast (COS-1) from African green monkey / [1, 2]
Kidney including cortex (HK-2) / [1, 2, 38]
Liver / Liver including hepatocyte (HepG2, Chang, WRL68) / [1, 2, 38]
Lung / Lung / [1, 2]
Muscle / Muscle: skeletal, smooth aortic (AOSMC+), coronary artery (HCASMC) / [1, 2, 14–17, 38, 70]
Muscle smooth from guinea pig / [71]
Pancreas / Pancreas / [1, 2, 44]
Prostate / Prostate / [1, 2]
Skin / Keratinocyte (HaCaT) / [26, 72–74]
Melanocyte (LB23) / [10]
Spleen / Spleen / [1, 2, 38]
Stomach / Stomach / [1, 2]
Testes / Testes / [38]

Table S5: Tissue, cell types and cell lines fulfilling expression criteria as described in the text. Articles reporting detection of the P2Y11 receptor and not fulfilling expression criteria or where PCR primer sequences were not available are:[14, 29, 51, 52, 57, 58, 71, 75–111].

References

1. Moore DJ, Chambers JK, Wahlin JP, et al. (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta 1521:107–119.

2. Moore DJ, Chambers JK, Murdock PR, Emson PC (2002) Human Ntera-2/D1 neuronal progenitor cells endogenously express a functional P2Y1 receptor. Neuropharmacology 43:966–978.

3. Duhant X, Schandene L, Bruyns C, et al. (2002) Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes. J Immunol 169:15–21.

4. Idzko M, Dichmann S, Ferrari D, et al. (2002) Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2Y receptors. Blood 100:925–932.

5. Ferrari D, Idzko M, Dichmann S, et al. (2000) P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Lett 486:217–224.

6. Ferrari D, La Sala A, Chiozzi P, et al. (2000) The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J 14:2466–2476. doi: 10.1096/fj.00-0031com

7. Schnurr M, Toy T, Stoitzner P, et al. (2003) ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y11 receptor signaling. Blood 102:613–620. doi: 10.1182/blood-2002-12-3745

8. Kornum BR, Kawashima M, Faraco J, et al. (2011) Common variants in P2RY11 are associated with narcolepsy. Nat Genet 43:66–71. doi: 10.1038/ng.734

9. Moreschi I, Bruzzone S, Nicholas RA, et al. (2006) Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J Biol Chem 281:31419–31429. doi: 10.1074/jbc.M606625200

10. Berchtold S, Ogilvie AL, Bogdan C, et al. (1999) Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Lett 458:424–428.

11. Adrian K, Bernhard MK, Breitinger HG, Ogilvie A (2000) Expression of purinergic receptors (ionotropic P2X1-7 and metabotropic P2Y1-11) during myeloid differentiation of HL60 cells. Biochim Biophys Acta 1492:127–138.

12. Yoon MJ, Lee HJ, Kim JH, Kim DK (2006) Extracellular ATP induces apoptotic signaling in human monocyte leukemic cells, HL-60 and F-36P. Arch Pharm Res 29:1032–1041.

13. Conigrave a D, Fernando KC, Gu B, et al. (2001) P2Y(11) receptor expression by human lymphocytes: evidence for two cAMP-linked purinoceptors. Eur J Pharmacol 426:157–163.

14. Wang L, Karlsson L, Moses S, et al. (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40:841–853.

15. Wang L, Jacobsen SE, Bengtsson A, Erlinge D (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol 5:16. doi: 10.1186/1471-2172-5-16

16. Wang L, Ostberg O, Wihlborg AK, et al. (2003) Quantification of ADP and ATP receptor expression in human platelets. J Thromb Haemost 1:330–336.

17. Chen Y, Shukla A, Namiki S, et al. (2004) A putative osmoreceptor system that controls neutrophil function through the release of ATP, its conversion to adenosine, and activation of A2 adenosine and P2 receptors. J Leukoc Biol 76:245–253. doi: 10.1189/jlb.0204066

18. Lee DH, Park KS, Kong ID, et al. (2006) Expression of P2 receptors in human B cells and Epstein-Barr virus-transformed lymphoblastoid cell lines. BMC Immunol 7:22. doi: 10.1186/1471-2172-7-22

19. Lee DH, Park KS, Kim DR, et al. (2008) Dual effect of ATP on glucose-induced insulin secretion in HIT-T15 cells. Pancreas 37:302–308. doi: 10.1097/MPA.0b013e318168daaa

20. Stober CB, Lammas DA, Li CM, et al. (2001) ATP-mediated killing of Mycobacterium bovis bacille Calmette-Guerin within human macrophages is calcium dependent and associated with the acidification of mycobacteria-containing phagosomes. J Immunol 166:6276–6286.

21. Mamedova L, Capra V, Accomazzo MR, et al. (2005) CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochem Pharmacol 71:115–125. doi: 10.1016/j.bcp.2005.10.003

22. Ben Yebdri F, Kukulski F, Tremblay A, Sevigny J (2009) Concomitant activation of P2Y(2) and P2Y(6) receptors on monocytes is required for TLR1/2-induced neutrophil migration by regulating IL-8 secretion. Eur J Immunol 39:2885–2894. doi: 10.1002/eji.200939347

23. Klepeis VE, Weinger I, Kaczmarek E, Trinkaus-Randall V (2004) P2Y receptors play a critical role in epithelial cell communication and migration. J Cell Biochem 93:1115–1133. doi: 10.1002/jcb.20258

24. Feng C, Mery AG, Beller EM, et al. (2004) Adenine nucleotides inhibit cytokine generation by human mast cells through a Gs-coupled receptor. J Immunol 173:7539–7547.

25. Gao Z-G, Wei Q, Jayasekara MPS, Jacobson KA (2013) The role of P2Y(14) and other P2Y receptors in degranulation of human LAD2 mast cells. Purinergic Signal 9:31–40. doi: 10.1007/s11302-012-9325-4

26. Inoue K, Hosoi J, Denda M (2007) Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Invest Dermatol 127:362–371. doi: 10.1038/sj.jid.5700526

27. Into T, Fujita M, Okusawa T, et al. (2002) Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of macrophages. Infect Immun 70:3586–3591.

28. Sakaki H, Tsukimoto M, Harada H, et al. (2013) Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLoS One 8:e59778. doi: 10.1371/journal.pone.0059778

29. Klein C, Grahnert A, Abdelrahman A, et al. (2009) Extracellular NAD(+) induces a rise in [Ca(2+)](i) in activated human monocytes via engagement of P2Y(1) and P2Y(11) receptors. Cell Calcium 46:263–272. doi: 10.1016/j.ceca.2009.08.004

30. Chadet S, Ivanes F, Benoist L, et al. (2015) Hypoxia/reoxygenation inhibits P2Y11 receptor expression and its immunosuppressive activity in human dendritic cells. J Immunol. doi: 10.4049/jimmunol.1500197

31. Wilkin F, Duhant X, Bruyns C, et al. (2001) The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol 166:7172–7177.

32. Vaughan KR, Stokes L, Prince LR, et al. (2007) Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol 179:8544–8553.

33. Choi JY, Namkung W, Shin JH, Yoon JH (2003) Uridine-5’-triphosphate and adenosine triphosphate gammaS induce mucin secretion via Ca2+-dependent pathways in human nasal epithelial cells. Acta Otolaryngol 123:1080–1086.

34. Choi JY, Cho KN, Yoon JH (2003) Effect of uridine 5’-triphosphate on mucin and lysozyme expression in human middle ear epithelial cells. Acta Otolaryngol 123:362–366.

35. Kim J V, Kang SS, Dustin ML, McGavern DB (2009) Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457:191–195. doi: 10.1038/nature07591

36. Buckley KA, Hipskind RA, Gartland A, et al. (2002) Adenosine triphosphate stimulates human osteoclast activity via upregulation of osteoblast-expressed receptor activator of nuclear factor-kappa B ligand. Bone 31:582–590.

37. Liu PS, Chen CY (2010) Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells. Toxicol Appl Pharmacol 244:308–314. doi: 10.1016/j.taap.2010.01.007

38. van Der Weyden L, Adams DJ, Morris BJ (2000) Capacity for purinergic control of renin promoter via P2Y(11) receptor and cAMP pathways. Hypertension 36:1093–1098.

39. Wirkner K, Schweigel J, Gerevich Z, et al. (2004) Adenine nucleotides inhibit recombinant N-type calcium channels via G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 receptor-type. Br J Pharmacol 141:141–151. doi: 10.1038/sj.bjp.0705588

40. Yu J, Sheung N, Soliman EM, et al. (2009) Transcriptional regulation of IL-6 in bile duct epithelia by extracellular ATP. Am J Physiol Gastrointest Liver Physiol 296:G563–G571. doi: 10.1152/ajpgi.90502.2008

41. Devader C, Drew CM, Geach TJ, et al. (2007) A novel nucleotide receptor in Xenopus activates the cAMP second messenger pathway. FEBS Lett 581:5332–5336. doi: 10.1016/j.febslet.2007.10.024

42. Roberts VH, Greenwood SL, Elliott AC, et al. (2006) Purinergic receptors in human placenta: evidence for functionally active P2X4, P2X7, P2Y2, and P2Y6. Am J Physiol Regul Integr Comp Physiol 290:R1374–R1386. doi: 10.1152/ajpregu.00612.2005

43. Buvinic S, Poblete MI, Donoso M V, et al. (2006) P2Y1 and P2Y2 receptor distribution varies along the human placental vascular tree: role of nucleotides in vascular tone regulation. J Physiol 573:427–443. doi: 10.1113/jphysiol.2006.105882

44. Lugo-Garcia L, Nadal B, Gomis R, et al. (2008) Human pancreatic islets express the purinergic P2Y11 and P2Y12 receptors. Horm Metab Res 40:827–830. doi: 10.1055/s-0028-1082050

45. Fruscione F, Scarfi S, Ferraris C, et al. (2011) Regulation of human mesenchymal stem cell functions by an autocrine loop involving NAD+ release and P2Y11-mediated signaling. Stem Cells Dev 20:1183–1198. doi: 10.1089/scd.2010.0295

46. Caraccio N, Monzani F, Santini E, et al. (2005) Extracellular adenosine 5’-triphosphate modulates interleukin-6 production by human thyrocytes through functional purinergic P2 receptors. Endocrinology 146:3172–3178. doi: 10.1210/en.2004-1527

47. Seiffert K, Ding W, Wagner JA, Granstein RD (2006) ATPgammaS enhances the production of inflammatory mediators by a human dermal endothelial cell line via purinergic receptor signaling. J Invest Dermatol 126:1017–1027. doi: 10.1038/sj.jid.5700135

48. Helenius MH, Vattulainen S, Orcholski M, et al. (2015) Suppression of endothelial CD39/ENTPD1 is associated with pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 308:L1046–L1057. doi: 10.1152/ajplung.00340.2014

49. Ding L, Ma W, Littmann T, et al. (2011) The P2Y(2) nucleotide receptor mediates tissue factor expression in human coronary artery endothelial cells. J Biol Chem 286:27027–27038. doi: 10.1074/jbc.M111.235176

50. Bintig W, Begandt D, Schlingmann B, et al. (2012) Purine receptors and Ca(2+) signalling in the human blood-brain barrier endothelial cell line hCMEC/D3. Purinergic Signal 8:71–80. doi: 10.1007/s11302-011-9262-7

51. Xiao Z, Yang M, Lv Q, et al. (2011) P2Y11 impairs cell proliferation by induction of cell cycle arrest and sensitizes endothelial cells to cisplatin-induced cell death. J Cell Biochem 112:2257–2265. doi: 10.1002/jcb.23144

52. Umapathy NS, Zemskov EA, Gonzales J, et al. (2010) Extracellular beta-nicotinamide adenine dinucleotide (beta-NAD) promotes the endothelial cell barrier integrity via PKA- and EPAC1/Rac1-dependent actin cytoskeleton rearrangement. J Cell Physiol 223:215–223. doi: 10.1002/jcp.22029

53. Higgins G, Buchanan P, Perriere M, et al. (2014) Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis. Am J Respir Cell Mol Biol 51:178–190. doi: 10.1165/rcmb.2012-0424OC

54. Liu M, Xu YF, Feng Y, et al. (2013) Epigallocatechin gallate attenuates interstitial cystitis in human bladder urothelium cells by modulating purinergic receptors. J Surg Res 183:397–404. doi: 10.1016/j.jss.2012.11.041

55. Coutinho-Silva R, Stahl L, Cheung KK, et al. (2005) P2X and P2Y purinergic receptors on human intestinal epithelial carcinoma cells: effects of extracellular nucleotides on apoptosis and cell proliferation. Am J Physiol Gastrointest Liver Physiol 288:G1024–G1035. doi: 10.1152/ajpgi.00211.2004

56. Hansen MR, Krabbe S, Novak I (2008) Purinergic receptors and calcium signalling in human pancreatic duct cell lines. Cell Physiol Biochem 22:157–168. doi: 10.1159/000149793

57. Shabbir M, Ryten M, Thompson C, et al. (2008) Purinergic receptor-mediated effects of ATP in high-grade bladder cancer. BJU Int 101:106–112. doi: 10.1111/j.1464-410X.2007.07286.x

58. Shabbir M, Ryten M, Thompson C, et al. (2008) Characterization of calcium-independent purinergic receptor-mediated apoptosis in hormone-refractory prostate cancer. BJU Int 101:352–359. doi: 10.1111/j.1464-410X.2007.07293.x

59. Janssens R, Boeynaems JM (2001) Effects of extracellular nucleotides and nucleosides on prostate carcinoma cells. Br J Pharmacol 132:536–546. doi: 10.1038/sj.bjp.0703833

60. Azimi I, Beilby H, Davis FM, et al. (2016) Altered purinergic receptor-Ca(2+) signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 10:166–178. doi: 10.1016/j.molonc.2015.09.006

61. Insel PA, Ostrom RS, Zambon AC, et al. (2001) P2Y receptors of MDCK cells: epithelial cell regulation by extracellular nucleotides. Clin Exp Pharmacol Physiol 28:351–354.

62. Post SR, Rump LC, Zambon A, et al. (1998) ATP activates cAMP production via multiple purinergic receptors in MDCK-D1 epithelial cells. Blockade of an autocrine/paracrine pathway to define receptor preference of an agonist. J Biol Chem 273:23093–23097.

63. Zambon AC, Brunton LL, Barrett KE, et al. (2001) Cloning, expression, signaling mechanisms, and membrane targeting of P2Y(11) receptors in Madin Darby canine kidney cells. Mol Pharmacol 60:26–35.

64. Nguyen TD, Meichle S, Kim US, et al. (2001) P2Y(11), a purinergic receptor acting via cAMP, mediates secretion by pancreatic duct epithelial cells. Am J Physiol Gastrointest Liver Physiol 280:G795–G804.

65. Crosson CE, Yates PW, Bhat AN, et al. (2004) Evidence for multiple P2Y receptors in trabecular meshwork cells. J Pharmacol Exp Ther 309:484–489. doi: 10.1124/jpet.103.060319

66. Hou M, Malmsjo M, Moller S, et al. (1999) Increase in cardiac P2X1-and P2Y2-receptor mRNA levels in congestive heart failure. Life Sci 65:1195–1206.

67. Borna C, Wang L, Gudbjartsson T, et al. (2003) Contractions in human coronary bypass vessels stimulated by extracellular nucleotides. Ann Thorac Surg 76:50–57.

68. Linan-Rico A, Wunderlich JE, Grants IS, et al. (2013) Purinergic autocrine regulation of mechanosensitivity and serotonin release in a human EC model: ATP-gated P2X3 channels in EC are downregulated in ulcerative colitis. Inflamm Bowel Dis 19:2366–2379. doi: 10.1097/MIB.0b013e31829ecf4d

69. Caporali F, Capecchi PL, Gamberucci A, et al. (2008) Human rheumatoid synoviocytes express functional P2X7 receptors. J Mol Med 86:937–949. doi: 10.1007/s00109-008-0365-8

70. Borno A, Ploug T, Bune LT, et al. (2012) Purinergic receptors expressed in human skeletal muscle fibres. Purinergic Signal 8:255–264. doi: 10.1007/s11302-011-9279-y

71. King BF, Townsend-Nicholson A (2008) Involvement of P2Y1 and P2Y11 purinoceptors in parasympathetic inhibition of colonic smooth muscle. J Pharmacol Exp Ther 324:1055–1063. doi: 10.1124/jpet.107.131169

72. Nagakura C, Negishi Y, Tsukimoto M, et al. (2014) Involvement of P2Y11 receptor in silica nanoparticles 30-induced IL-6 production by human keratinocytes. Toxicology 322:61–68. doi: 10.1016/j.tox.2014.03.010

73. Ishimaru M, Tsukimoto M, Harada H, Kojima S (2013) Involvement of P2Y(1)(1) receptor in IFN-gamma-induced IL-6 production in human keratinocytes. Eur J Pharmacol 703:67–73. doi: 10.1016/j.ejphar.2013.02.020

74. Kawano A, Kadomatsu R, Ono M, et al. (2015) Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors. PLoS One 10:e0127919. doi: 10.1371/journal.pone.0127919

75. Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969–31973.

76. Communi D, Janssens R, Robaye B, et al. (2000) Rapid up-regulation of P2Y messengers during granulocytic differentiation of HL-60 cells. FEBS Lett 475:39–42.

77. Communi D, Suarez-Huerta N, Dussossoy D, et al. (2001) Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. J Biol Chem 276:16561–16566. doi: 10.1074/jbc.M009609200

78. Hanley PJ, Musset B, Renigunta V, et al. (2004) Extracellular ATP induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of IL-6 in macrophages. Proc Natl Acad Sci U S A 101:9479–9484. doi: 10.1073/pnas.0400733101

79. Myrtek D, Muller T, Geyer V, et al. (2008) Activation of human alveolar macrophages via P2 receptors: coupling to intracellular Ca2+ increases and cytokine secretion. J Immunol 181:2181–2188.

80. van der Weyden L, Adams DJ, Luttrell BM, et al. (2000) Pharmacological characterisation of the P2Y11 receptor in stably transfected haematological cell lines. Mol Cell Biochem 213:75–81.

81. van der Weyden L, Rakyan V, Luttrell BM, et al. (2000) Extracellular ATP couples to cAMP generation and granulocytic differentiation in human NB4 promyelocytic leukaemia cells. Immunol Cell Biol 78:467–473. doi: 10.1111/j.1440-1711.2000.t01-4-.x

82. Manohar M, Hirsh MI, Chen Y, et al. (2012) ATP release and autocrine signaling through P2X4 receptors regulate gammadelta T cell activation. J Leukoc Biol 92:787–794. doi: 10.1189/jlb.0312121

83. Beldi G, Wu Y, Banz Y, et al. (2008) Natural killer T cell dysfunction in CD39-null mice protects against concanavalin A-induced hepatitis. Hepatology 48:841–852. doi: 10.1002/hep.22401

84. Chen BC, Lin WW (2000) Pyrimidinoceptor potentiation of macrophage PGE(2) release involved in the induction of nitric oxide synthase. Br J Pharmacol 130:777–786. doi: 10.1038/sj.bjp.0703375

85. Kaufmann A, Musset B, Limberg SH, et al. (2005) “Host tissue damage” signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes. J Biol Chem 280:32459–32467. doi: 10.1074/jbc.M505301200

86. White PJ, Webb TE, Boarder MR (2003) Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. Mol Pharmacol 63:1356–1363. doi: 10.1124/mol.63.6.1356

87. Marcet B, Horckmans M, Libert F, et al. (2007) Extracellular nucleotides regulate CCL20 release from human primary airway epithelial cells, monocytes and monocyte-derived dendritic cells. J Cell Physiol 211:716–727. doi: 10.1002/jcp.20979

88. Wihlborg AK, Balogh J, Wang L, et al. (2006) Positive inotropic effects by uridine triphosphate (UTP) and uridine diphosphate (UDP) via P2Y2 and P2Y6 receptors on cardiomyocytes and release of UTP in man during myocardial infarction. Circ Res 98:970–976. doi: 10.1161/01.RES.0000217402.73402.cd

89. Gugger M, White R, Song S, et al. (2008) GPR87 is an overexpressed G-protein coupled receptor in squamous cell carcinoma of the lung. Dis Markers 24:41–50.

90. Jelassi B, Chantome A, Alcaraz-Perez F, et al. (2011) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30:2108–2122. doi: 10.1038/onc.2010.593

91. Gulbransen BD, Sharkey KA (2009) Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136:1349–1358. doi: 10.1053/j.gastro.2008.12.058

92. Zerpa H, Crawford C, Knight GE, et al. (2013) Extracellular ATP signaling in equine digital blood vessels. Eur J Pharmacol 702:242–249. doi: 10.1016/j.ejphar.2013.01.018

93. Lakshmi S, Joshi PG (2006) Activation of Src/kinase/phospholipase C/mitogen-activated protein kinase and induction of neurite expression by ATP, independent of nerve growth factor. Neuroscience 141:179–189. doi: 10.1016/j.neuroscience.2006.03.074

94. Guzman-Aranguez A, Irazu M, Yayon A, Pintor J (2008) P2Y receptors activated by diadenosine polyphosphates reestablish Ca(2+) transients in achondroplasic chondrocytes. Bone 42:516–523. doi: 10.1016/j.bone.2007.10.023

95. Millart H, Alouane L, Oszust F, et al. (2009) Involvement of P2Y receptors in pyridoxal-5’-phosphate-induced cardiac preconditioning. Fundam Clin Pharmacol 23:279–292. doi: 10.1111/j.1472-8206.2009.00677.x

96. Alvarenga EC, Rodrigues R, Caricati-Neto A, et al. (2010) Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the P2Y receptor: role of the P2Y1 receptor. Bone 46:355–362. doi: 10.1016/j.bone.2009.09.017

97. Talasila A, Germack R, Dickenson JM (2009) Characterization of P2Y receptor subtypes functionally expressed on neonatal rat cardiac myofibroblasts. Br J Pharmacol 158:339–353. doi: 10.1111/j.1476-5381.2009.00172.x

98. Brandenburg LO, Jansen S, Wruck CJ, et al. (2010) Antimicrobial peptide rCRAMP induced glial cell activation through P2Y receptor signalling pathways. Mol Immunol 47:1905–1913. doi: 10.1016/j.molimm.2010.03.012

99. Wildman SS, Boone M, Peppiatt-Wildman CM, et al. (2009) Nucleotides downregulate aquaporin 2 via activation of apical P2 receptors. J Am Soc Nephrol 20:1480–1490. doi: 10.1681/asn.2008070686

100. Wildman SS, Marks J, Turner CM, et al. (2008) Sodium-dependent regulation of renal amiloride-sensitive currents by apical P2 receptors. J Am Soc Nephrol 19:731–742. doi: 10.1681/asn.2007040443

101. Gifford SM, Yi FX, Bird IM (2006) Pregnancy-enhanced Ca2+ responses to ATP in uterine artery endothelial cells is due to greater capacitative Ca2+ entry rather than altered receptor coupling. J Endocrinol 190:373–384. doi: 10.1677/joe.1.06635

102. Barragan-Iglesias P, Mendoza-Garces L, Pineda-Farias JB, et al. (2015) Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats. Pharmacol Biochem Behav 128:23–32. doi: 10.1016/j.pbb.2014.11.001

103. Barragan-Iglesias P, Pineda-Farias JB, Cervantes-Duran C, et al. (2014) Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol Pain 10:29. doi: 10.1186/1744-8069-10-29

104. Pintor J, Sanchez-Nogueiro J, Irazu M, et al. (2004) Immunolocalisation of P2Y receptors in the rat eye. Purinergic Signal 1:83–90. doi: 10.1007/s11302-004-5072-5

105. Alkayed F, Kashimata M, Koyama N, et al. (2012) P2Y11 purinoceptor mediates the ATP-enhanced chemotactic response of rat neutrophils. J Pharmacol Sci 120:288–295.

106. Potthoff SA, Stegbauer J, Becker J, et al. (2013) P2Y2 receptor deficiency aggravates chronic kidney disease progression. Front Physiol 4:234. doi: 10.3389/fphys.2013.00234

107. Ohtomo K, Shatos MA, Vrouvlianis J, et al. (2011) Increase of intracellular Ca2+ by purinergic receptors in cultured rat lacrimal gland myoepithelial cells. Invest Ophthalmol Vis Sci 52:9503–9515. doi: 10.1167/iovs.11-7809

108. Alberto AVP, Faria RX, de Menezes JRL, et al. (2016) Role of P2 receptors as modulators of rat eosinophil recruitment in allergic inflammation. PLoS One 11:e0145392. doi: 10.1371/journal.pone.0145392

109. Song S, Jacobson KN, McDermott KM, et al. (2016) ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells. Am J Physiol Cell Physiol 310:C99–C114. doi: 10.1152/ajpcell.00092.2015

110. Certal M, Vinhas A, Pinheiro AR, et al. (2015) Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts. Cell Calcium 58:518–533. doi: 10.1016/j.ceca.2015.08.004

111. Rodrigues RJ, Almeida T, Richardson PJ, et al. (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295. doi: 10.1523/JNEUROSCI.0628-05.2005

1