A&AE 421

Landing In a Crosswind

Homework: Due Wednesday 11/1/06

You have been e-mailed the Matlab code contained in this document. For the Cessna 182 aircraft given on pages 480-482 of Roskam, find the following for the approach flight condition. Watch your units.

1. Plot rudder deflection, aileron deflection, and bank angle versus sideslip angle () for  up to 12 degrees. Also plot these quantities versus crosswind (knots). Hint. The code is set up to make these plots but for a different aircraft. You need only change the vehicle specific constants in the Matlab code to those for the Cessna 182.

2. How much rudder deflection is required to land in a 10 knot crosswind using the conventional method?

3. What would the crab angle be if the pilot of the Cessna chose to land in a 10 knot crosswind with a crab angle?

Lesson Objectives:

What are the control techniques for landing in a crosswind?

Landing with a crab angle (B-52), see sketch 12

requires special landing gear

Conventional method (most airplanes), see sketch 2

What are the control power implications of landing in a crosswind?

for design of the rudder and aileron

What do the Military Specifications on Flying Qualities say about landing in a crosswind?

(portions of this document are attached)

What are typical values of crosswind to use in designing control surfaces?

What are the allowable control forces for landing in a crosswind?

Solution Technique:

The analysis required for this involves finding the steady-state solution to the Lateral-Directional equations of motion (roll, yaw and side-force equations of motion). See attached MATLAB code.

See section 4.2.6 of Roskam (Lateral-Directional Stability and Control Characteristics for Steady State, Straight Line Flight), pp 216-218.

Landing in a Crosswind Using a Crab Angle

Landing in a Crosswind with Sideslip

(Conventional method)

Crosswind effects plotted versus sideslip angle (beta, degrees)

Crosswind effects plotted versus crosswind component (knots)

% Investigation of lateral-directional trim in a crosswind

% See page 223 of Roskam for aircraft data

%

clear

disp(' ')

disp(' Start here')

disp(' ')

%

% INPUTS

%

W=8750 % pounds

rho=.002378 % slugs/ft^3

U1=270 % ft/sec

S=253 % ft^2

LT1=0 % ft-lbf

NT1=0 % ft-lbf

DND1=0 % ft-lbf

b=38 % ft

Cyb=-.0105 % per degree

Cyda=0 % per degree

Cydr= .0021 % per degree

Clb=-.0029 % per degree

Clda=.0024 % per degree

Cldr=.0002 % per degree

Cnb=.0018 % per degree

Cnda=.0005 % per degree

Cndr=-.001 % per degree

gamma=0 % degree

deltabeta=1 % degree

nbeta=12

%

% Problem statement

% Given beta, find phi(deg), da(deg) and dr(deg)

% x=sin(phi),da,dr

% Ax=B*beta

%

% Set up dimensions

%

BETA=zeros(1,nbeta);

DA=zeros(1,nbeta);

DR=zeros(1,nbeta);

PHI=zeros(1,nbeta);

xwindkn=zeros(1,nbeta);

%

% Compute intermediate items

%

d2r=pi/180

qbar=.5*rho*U1*U1

U1knots=U1*.5925 % knots

a1=[W*cos(gamma*d2r)/(qbar*S), 0, 0]'

a2=[Cyda, Clda, Cnda]'

a3=[Cydr, Cldr, Cndr]'

A=[a1 a2 a3]

B=[-Cyb; -Clb; -Cnb]

AIB=inv(A)*B;

%

for i=0:nbeta-1

beta=i*deltabeta;

x=AIB*beta;

PHI(i+1)=asin(x(1))/d2r;

DA(i+1)=x(2);

DR(i+1)=x(3);

BETA(i+1)=beta;

end

windkn=sin(BETA*d2r)*U1*.5925

%

% Plot results vs beta

%

figure(1)

subplot(3,1,1)

plot(BETA,DR)

heading=['Landing in a crosswind, U1= ',num2str(U1knots),' knots, right sideslip (beta+)']

title(heading)

ylabel2('rudder (deg)')

text2(.05,.8,'Dr+ means trailing edge left, push left pedal, nose left of wind, wind hits on the right side')

%

subplot(3,1,2)

plot(BETA,DA)

ylabel2('aileron (deg)')

text2(.05,.8,'Da+ means right aileron up, push stick right')

%

subplot(3,1,3)

plot(BETA,PHI)

text2(.05,.6,'Right wing down, right bank angle')

ylabel2('phi (deg)',-.10,.9)

xlabel('beta (deg)')

%

% Plot results vs crosswind velocity in knots

%

figure(2)

subplot(3,1,1)

plot(windkn,DR)

title(heading)

xlabel('crosswind (knots)')

ylabel2('rudder (deg)')

text2(.05,.8,'Dr+ means trailing edge left, push left pedal, nose left of wind, wind hits on the right side')

text2(.05,.65,'Crosswind=U1*sin(beta)')

%

subplot(3,1,2)

plot(windkn,DA)

xlabel('crosswind (knots)')

ylabel2('aileron (deg)')

text2(.05,.8,'Da+ means right aileron up, push stick right')

%

subplot(3,1,3)

plot(windkn,PHI)

xlabel('crosswind (knots)')

text2(.05,.6,'Right wing down, right bank angle')

ylabel2('phi (deg)',-.10,.9)