pA10

VARIATIONALSCHWINGERAPROACHTODIRECTEXCITATON OF HYDROGEN-LIKE(Li2+ (1s))TARGETTOTHESTATEn=2

BYPROTONIMPACTENERGIESFROM9keVto3MeV

Friha KHELFAOUI1,2,Boumediene LASRI1,2and Oukacha ABBES2

1DépartementdePhysique,UniversitéAboubekrBelkaïd–Tlemcen,B.P.119,Tlemcen,Algérie

2DépartementdePhysique,UniversitéMoulayTahar–Saïda,B.P.138,Ennasr,20000Saïda,Algérie

E-mail:

ABSTRACT:The1s՜2s,2p,3s,3pand3dexcitationcrosssectionsforhydrogen-like(Li2+)byprotonimpact havebeencalculatedinawideenergyrangefrom9keVto3MeV,usingSchwinger’svariationalprinciple withintheimpactparameterformalism.Thesecross sections are relevanttocontrolled nuclearfusionstudies. Theyarealsoimportantin fusion plasmaresearch[1].Thebehavior ofthe computedcrosssections arein excellentagreementwithavailabletheoreticalresults, obtained bytheclose-coupling method whichisthatof TCAO(Two-centreAtomicOrbital expansion) ofErmolaevandco-workers[1] andSCE (SingleCentre Expansion) ofHall andco-workers [2].

KEYWORDS: fusion plasma, excitationcross section, Schwingervariationalprinciple,atomic collision

Introduction:

Inner-shellprocessesinion-atom collisionshavebeenextensivelystudiedinthepast,both experimentallyandtheoretically, coveringawiderangeofimpactvelocities.Inthispaper,we haveperformedanapplicationofthefractional formoftheSchwingerprincipletostudy the direct excitations of the hydrogen-like by proton impact. This approach was applied to study thedirectexcitationof hydrogenatombyprotonimpactatenergies,from10keVto200keV [3].WeextendourvariationalSchwingerapproachtodirectexcitationofLithium ion(Li2+) target by proton impact at energies from9 keV to 3 MeV.

Thetotalcrosssectionsfortargetexcitation Li2+(1s) tothestatesLi2+( 2s,2p,n=2) are presentedinthisenergyrangeby theSchwinger’svariationalprinciplewhichisperformed

+

byexpandingthewavefunctions α

2p-1}.

and β

onfive-statesbasissetas{1s,2s,2p0,2p+1,

Wealsopresentseveralresultsobtainedfromotherstheoreticalmodelsassingleandtwo-

centre close-coupling approaches [1] [2].

Currentlythereareno experimentalresultsfor anyof theabovestated transitions. While an experimentalpreparationoftheLi2+(1s)withamergedprotonbeammaybefeasible,it appears unrealistic that an excited Li2+ion target could be prepared [2] .

Thesecrosssectionsareimportantin fusionplasmaresearch[4].Lithiumpelletsareusedto conditiontheplasmaconfinementwalls,i.e. toreduceedgeinfluxfromHandCimpurities whichreduceconfinementtimes.Lithiumpellets arealsousedindiagnosticprocedures,e.g. the measurement of hydrogen ion temperatures in the plasma core after neutral beam injection.Also,electronremovalfrom LiionsandchargetransfertoD+constitutesincreased radiative power lossesand decreased deuteron fuel densities [2].

Schwinger’s variational principle and close-coupling method applied to direct excitation: SeveraltheoreticalapproacheshavebeenmadetotheproblemofexcitationofLithiumion (Li2+)targetbyprotonimpact.AMErmolaevandMRCMcDowell(1987)usedtheclose- coupledatomicorbitalmodelwithintheimpactparameterformalism[1]intheenergyregion

17.5 keV to 3.0 MeV to calculate the cross section of the direct excitation:

H++ Li2+(1s)՜H++ Li2+(nl)*. n=2 (1) Two different TCAO bases have been used in the calculations:

1- A 32-state basis AO32 which have been applied to the problem of 1s՜2s, 2p excitations of

(Li2+)by proton impact varying the incident energy from17.5 keV to 3.0 MeV

2- A59-statebasisAO59whichhavebeenappliedtotheproblemof1s՜2s,2pand1s՜3s,

3p,3dexcitationsof(Li2+)byprotonimpactvaryingtheincidentenergyfrom17.5keVto

3.0 MeV.

K A Hall, J F Reading and A L Ford (1996) usedalso the close-coupled atomic orbitalmodel, basedonadevelopmentatasinglecenterwithin theimpactparameterformalism[2] buttheir theoreticalcrosssectionsof thereaction(1) havebeenobtainedbyperformingalargesingle FiniteHilbertBasisSet(FHBS) calculationincludingstateswith angularmomentum uptol=6, intheenergyregionfrom30keVto600keVThe resultsofthisapproachareinverygood agreement with the experiment results for the P + Hcollision[5] .

Inthepresentwork,thecalculations,basedonthefractionalform oftheSchwingervariational principle,areperformed.Thevariationalapproachreportedhereuses methods thathavebeen described previously andso will be recalled [6] [7].

Let ψ+

and −

bethescatteringEigen-statesoftheHamiltoniansatisfyingoutgoingand

incomingwaveboundaryconditionsdefined,inacollisionwithoutrearrangement,bythe eikonal Lippmann-Schwinger equations:

+∞

+ ∫ + +

ψα(z)=α(z)+

dz′GT(z−z′)V(z′)ψα(z′)

−∞

(2a)

ψ−(z)=

β(z)+∫−∞

dz′

ψ−(z′)G−(z−z′)V(z′)

(2b)

whereVisthepotentialresponsiblefortheexcitationandobtainedbyomissionofthelong-

rangeprojectile-targetcoulombinteraction[8],i.e., ( −1

r r −1 ),

and β z

V =ZP R

− R− x

α(z) ( )

aretheinitialandfinalstatesofthetargetrespectively.Wherezisthecoordinatealongthe

straight trajectory of the projectile andG±

are target Green‘s operators.

The transition amplitude, for the impact parameterρr , may be written forα≠β, as:

r i (βV ψα )(ψβ V α)

aβα

(ρ)=−

v

(ψ− V

−VG+V

ψ+ )

(3)

wherethenotation ( ) indicatestheintegrationovertheelectroniccoordinatesaswellas

overzonlywhen GT

doesnotappear,andoverz′whenGT

ispresent,andvistheimpact

r

velocity.Itcanbeeasilyshownthattheexpression(3),forthetransitionamplitude

aβα(ρ) is

stationary under arbitrary variations on ψα

and onψβ

. Indeed, it is easy to show that:

δa (ρr)= 0 (4)

Untilfirstorderfor δψ+

and

δψ−

.Byexpanding ψ+

and β

ontwotruncatedbasissets

r

{i}and{ j}

respectively,onecalculatesapproximatetransitionamplitude

a%βα(ρ).Thetwo

basissetsarenotnecessarilyidenticalbuttheymusthavethesamefinitedimensionN.Then, usingthevariationalconditionδaβα(ρ) ,onegetstwoseparatefinitesetsoflinearequations

forthecoefficientsoftheexpansions:onefor ψ+

andonefor

− .Solvingthesesetsof

linearequationsprovideapproximatesolutions

ψ%+

and

ψ%−

forψ+

and

− ,respectively.

Finally,theinsertionoftheirsolutionsineq.(3)leadstothefollowingpracticalformofthe approximate transition amplitude:

N N

a~ (ρ)= ⎜−

⎟∑∑(βV i)(D−1) (j Vα)

(5)

r ⎛ i⎞

βα ⎝ v⎠

i=1

ij

j=1

Where(D−1)

elements:

is the element (i,j) ofthe matrixD−1, inverse of the matrix D defined by the

Dij =(i V−VGTV j)

(6)

Quantumtransition amplitude between initial and final states ofthe system(projectile-

r r

Target):α ⊗ kα

→ β ⊗kβ

is:

r +

Tβα=kβ⊗βVψα

=⎡kβ⊗β⎤V⎡ψ+E ⊗kα⎤

(a)

(b)

(7)

⎣ ⎦ ⎣ α ⎦

r r

=kβ,βVkα,ψ+E

r r

(c)

Where α ⊗

kα , β

+E

⊗ kβ

theinitialandfinalarestatesofthesystemtarget-projectile

respectively and ψα

is eikonal scattering state of the target.

Equations(7b,c)resultbytakingthefirstorderoftheexpansioninpowerof(1/ μ)

(μis

reducedmassofcollisionalsystem)forthescatteringwavebecauseourstudyisbasedonthe impactparameterformalism.

Using the energy conservation, quantumtransition amplitude can be written:

Z ⎜⎛Z −1

r 2r

iηv.ρr

2i P⎝ T ⎠ r

Tβα(η)=iv∫dρe ρ

v aβα(ρ)

(8)

Where

ZP andZT

arethechargeofprojectileandthetargetnucleusrespectivelyandηristhe

transverseimpulsiontransfer(ηr.vr=0 ).Fromthisrelationwecanseethatthephasefactor

2iZP ⎛⎜Z −1⎞⎟

ρ v isreintroduced,itrepresentsthepotentialcontributionbetweentheprojectile

and the whole target inter-aggregate contribution [6].

For an excitation process, the differentialcross section is given by the relation:

dσβα =

μ kα

βα

(ηr)2

(9)

dΩ 4π2 k

whereΩ indicates the solid angle. Using the case oflittle longitudinal impulsion transferkα ≈1,

the total cross section will be:

σβα

+∞

=2π dρρ

0

a (ρr)2

(10)

Inthepresentcalculations,thetotalcrosssectionhasbeenevaluatedbysubstitutingthe expressionoftheapproximatetransitionamplitude(5)in(10)andomissionoftheintegration

overtherangeofimpactparameters[ρ0,+∞[inourcaseρ0=11.2au. Therefore,thetotalcross

section may be approximated as:

σβα

=2π

ρ0

∫0 dρρ

a%βα

(ρr)2

(11)

Inthecode,apiecewiseSimpsonintegrationismade.Anautomaticproceduremanagesto

+

ensureagivenaccuracyoftheoutcome.ThetargetoperatorGT

hasbeenexpandedonthe

wholediscretespectrum.Thecontributionofthecontinuum hasbeentakenintoaccountusing an analyticalcontinuation which consists to evaluate the art closeto ionization threshold.

Inourstudy,wearedealingwithtargetexcitationfromthegroundstate.Hence,thestates i

and j ,intheexpression(5),arechosentobeintheset{υ}

ofEigen-statesofthetarget,

which are solutions of the eikonal Schrodinger equation of the target:

⎛ ∂ ⎞

(12)

⎜ −iv +H T ⎟ υ(z) =0

⎝ ∂z ⎠

Further, they are restricted to a subset which contains the lowest target states, includingα and

β.Using thesteps of our calculations, we find theresults of the following approximations:

% r − i (βV α)

1-The first Born approximation (Born-I):aβα(ρ)is replaced by v

in (11).

r − i

βV −VG+V α

2-The second Born approximation (Born-II):a%βα(ρ)is replaced by (

T )in (11).

r i (βV α)(βV α)

3-Schwinger-Born-approximation:a%βα(ρ)is replaced by− v

(βV

−VG+V

α)in (11).

4-Schwinger55approximation(Schw55):ψ+

and ψβ

areexpandedontheabove-mentioned

five-statebasissetas{1s,2s,2p0,2p+1,2p-1}.Thisapproximationisusedtostudythe excitation ofLi2+(1s)to the states 2s, 2p.

Results and discussions:

The present 1s՜2s excitation total cross sections, represented by Figure 1, show that the Schw55results,whichrefertotheapproachof Schwingerwith5states,haveapeaklocated around 75 keV. But above 800 keV this procedure, even in the Figure 2 and Figure 3, represented the total cross sections for excitation to the state 2p and to the level n=2 respectively, joinwithan almostsimilarresultsobtainedusingdifferenttheoreticalapproaches: TCAO-32, TCAO-59 of Ermolaev et al [1] and FHBS of Hall et al [2].

TheapproachFHBS(FiniteHilbertBasisSet) givesresultsslightly higherthanthoseof Ermolaevetal[1].AlthoughthecrosssectionsarisingfromTCAO-32,TCAO-59andFHBS aregenerallyaboveourSchw55results,theirbehaviorissimilartothebehaviorofcross sectionsobtainedbyourtheoreticalprocedure.Thetwotheoriesprovidealsouptoproton energy around 75 keV.

thebehaviorofourresults,fortheexcitation1s՜2poftheapproximationSchw-B,presented in Figure 2 proved in very good agreement with the behavior of the results of both approaches TCAO-32andTCAO-59.Whilethosearisingfrom Schw55areslightlylowerintheenergy range 30-300 keV.

InFigure3,onereportstotalcrosssectionsforexcitationtotheleveln=2whichareobtained by summingexcitation cross sections to 2s and 2p states. It is essential to note that the theoreticalresultsprovidedbythefirstandsecondBornapproximationsgreatlyoverestimate thetotalcrosssectionsfortheexcitationtothe leveln=2inthefieldoflowenergy.Butthey give the same pace as other theoretical results for high energies.

IntheTCAO-32,TCAO-59,Schw-B,Schw55results presentedhere,wehave smallvaluesof theexcitationtotalcrosssectionsathighimpactvelocitieswherewehavetherequisiteenergy toremovetheelectron.Thentheionizationprocessisthemostdominantinthisenergyrange. Atlowandintermediateenergiestheresultsdifferduetotheexistenceofmultiplescattering, but they have the same behavior.The lack of experimental results cannot rule on the validity of each theoretical calculation presentedhere.

100.0

10.0

Ermolaev etal(TCAO-32) Ermolaev etal(TCAO-59) Hall etal(SCE)

Born-I Born-II

Schwinger-Born (Shw-Born) Schw55

100.00

10.00

1.00

1.0

0.10

Ermolaev et al.(TCAO-32) Ermolaevet al (TCAO-59) Halletal(SCE)

Borb-I Born-II

Schwinger-Born(Schw-Born)

Sch55

0.1

1 10 100 1000 10000

Impact energy E(keV)

0.01

1 10 100 1000 10000

ImpactenergyE(keV)

Figure1:crosssectionsfortheexcitation tothestate2sofLi2+byprotonimpacts

Figure2:crosssectionsfortheexcitation thestate2p ofLi2+byprotonimpacts.

100.0

10.0

1.0

Ermolaev etal(TCAO-32) Ermolaev etal(TCAO-59) Hall etal(SCE)

Born-I Born-II

Schwinger-Born (Schw-Born)

Schw55

0.1

1 10 100 1000 10000

Impact energyE(keV)

Figure3:crosssectionsfortheexcitationto thelevel n=2ofLi2+byprotonimpacts.

Conclusion:

WehavesuccessfullyappliedtheSchwingervariationalmethodtostudytheexcitationofthe ionLi2+(1s)totheLi2+(n=2)state byimpactofprotonswithenergiesrangingfrom9keVto3

Mev.Thedirectexcitationcrosssections,deducedfrom thisnewapproach,showverygood convergenceof the variationalapproachwhen one increasesthenumberof thetargetstateson whichthescatteringstatesareexpanded.Goodresultsareobtainedwhenthescatteringstates

+ and

β aredevelopedonthebasisof5states,comparedwiththoseofErmolaevetal[1]

and those of Hall et al [2].

At higher energies, the varioustotal cross sections prove to be comparable. This deduction shouldbesupported,ofcourse,bythenewclose-couplingcalculationswhichareconstantly used bases of atomic orbitals increasingly large.

Inthiscase,fortheexcitationtheionLi2+(1s)byabareion,itshouldbepossibletoimprove thepresentvariationalapproachbyintroducingatleastthecapturegroundstate1sinthe

expansion of bothψ+

andψ− .

Finally,thepresent-dayvariationalprocedureappearstobepowerfultoolstoinvestigatethe excitation process in atomic collisions at intermediate impact velocities.

References:

[1]A. M. Ermolaev and M. R. C. McDowell; J. Phys. B: At. Mol. Phys. 20 L379-L383 (1987) [2] K. A. Hall, J. F. Reading and A. L. Ford; Phys. B:At Mol. Opt Phys. 29 pp1979-

1994(1996)

[3]B.Lasri,M.Bouamoud,R.Gayet,NuclearInstrumentsandMethodsinPhysicsResearch

B 251, pp66–72 (2006)

[4]RA.Phaneuv,RKJaneuv,Atomic ad Plasma-Materialinteraction Processes in Controlled Thermonuclear Fusion ed R K Janev and H W Drawin(Amsterdam:Elsevier) pp371–80 (1993)

[5] A M Ermolaev, J. Phys. B: At. Mol. Opt. Phys. 23 (1990) L45-L50.

[6]M.Bouamoud,ThèsedeDoctoratd’EtatesSciences, Universitéde BordeauxI,1988 (unpublished).

[7]R.GayetandM.Bouamoud,NuclearInstrumentsandMethodsinPhysicsResearch

B 4 .515-522 (1989)

[8] K. Janev and A. Salin, Ann. Phys (N.Y.) 73,136(1972)