Decomposing the seasonal fitness decline

Meit Öberg*, Tomas Pärt, Debora Arlt, Ane T. Laugen and Matthew Low

Online Resource

Appendix 1: Bayesian methods JAGS model code

Appendix 2: Full candidate model Tables S1-S4

Appendix 1 – Bayesian methods JAGS model code

To calculate the uncertainty associated with the relative contribution of each component to the seasonal reproductive decline, we used a Bayesian Gibb’s sampler (JAGS: Plummer 2003; called from R using the ‘rjags’ package) and the model for each reproductive component that contained explanatory variables identified as important through multi-model inference (i.e. parameters with relative importance weights >0.5; see results). We used this framework because any function of model parameters can be computed in a Bayesian mode of inference using MCMC along with their error structure while accounting for all uncertainty involved in combining functions of parameters (Kéry 2010). We first calculated the 95% credible intervals for the decline in each reproductive component by subtracting the posterior distribution estimate for day 31 from day 1 for each component (see JAGS code below) while fixing other variables at their mean levels (i.e. age, field-layer height, nest type). To make probability statements on potential differences between the reproductive components in their contribution to the total reproductive decline, we standardised each decline estimate to be the equivalent number of recruits per nest (see Methods) and subtracted these posterior distributions from each other within the JAGS model structure (see code below). From this, if the difference between two components in their decline was centred on zero this would suggest their relative contributions to be similar; if the difference was predominantly positive (or negative), this would suggest a difference between these components at a probability equal to the proportion of the posterior distribution of their difference being positive (or negative).

All reported results were sampled directly from the posterior distribution output from JAGS; each MCMC chain consisted of 20000 values derived from 250000 iterations with a thinning interval of 10 and a burn-in of 50000. In all analyses 3 chains were run with different initial values and convergence checked using the Gelman and Rubin diagnostic (Gelman and Rubin 1992; using the ‘gelman.diag’ function in R) and visual inspection of the chains. Non-informative priors were used in all the linear models (betas~dnorm(0, 0.00001), tau~dgamma(0.0001, 0.0001)).

Gelman A, Rubin DB. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7:457-511.

Kéry M. (2010). Introduction to WinBUGS for Ecologists. Academic Press.

Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Vienna, Austria.

# JAGS MODEL for Öberg, Pärt, Arlt, Laugen & Low

#Decomposing the Seasonal Fitness Decline #

# Oecologia #

#script written by ML

model{

#BREEDING SUCCESS MODEL

##priors

alpha.g.bs ~ dnorm(0,.00001) #intercept

b1.eld.bs ~ dnorm(0,.00001) #eld

b2.eld2.bs ~ dnorm(0,.00001) #eld squared

b3.flh.bs ~ dnorm(0,.00001) #field layer height

b4.nest.bs ~ dnorm(0,.00001) #nest type

tau.g.bs ~ dgamma(.0001,.0001)

#model

for(i in 1:length(y.bs)){

y.bs[i]~dbern(bs[i])

bs[i]<-ilogit(alpha.bs[group.bs[i]]+b1.eld.bs*eld.bs[i]+b2.eld2.bs*eld2.bs[i]+b3.flh.bs*flh.bs[i]+b4.nest.bs*nest.bs[i])

} #close i

for(j in 1:max(group.bs)){ #include year as random effect

alpha.bs[j]~dnorm(alpha.g.bs, tau.g.bs)

} # close j

####################

#CLUTCH SIZE

#priors

alpha.g.cs ~ dnorm(0,.00001)

b1.eld.cs ~ dnorm(0,.00001) #eld

tau.g.cs ~ dgamma(.0001,.0001)

#model

for(k in 1:length(y.cs)){

y.cs[k]~dpois(clutch[k])

clutch[k]<-exp(alpha.cs[group.cs[k]]+b1.eld.cs*eld.cs[k])

} #close k

for(m in 1:max(group.cs)){ #add random effect of year

alpha.cs[m]~dnorm(alpha.g.cs, tau.g.cs)

} # close m

#######################

#FLEDGING SUCCESS

#priors

alpha.g.fs ~ dnorm(0,.000001)

b1.eld.fs ~ dnorm(0,.00001) #eld

b2.age.fs ~ dnorm(0,.00001) #female age

b3.flh.fs ~ dnorm(0,.00001) #field layer height

b4.int.fs ~ dnorm(0,.00001) #interaction term

tau.g.fs ~ dgamma(.0001,.0001)

#model

for(n in 1:length(y.fs)){

y.fs[n]~dbin(p.fs[n],clutch.fs[n]) #binomial draw given clutch size

p.fs[n]<-ilogit(alpha.fs[group.fs[n]]+b1.eld.fs*eld.fs[n]+b2.age.fs*age.fs[n]+b3.flh.fs*flh.fs[n]+b4.int.fs*eld.fs[n]*age.fs[n])

} #close n

for(o in 1:max(group.fs)){ #add year as random effect

alpha.fs[o]~dnorm(alpha.g.fs, tau.g.fs)

} # close o

##########################

#RECRUITMENT SUCCESS

#priors

alpha.g.rs ~ dnorm(0,.00001)

b1.eld.rs ~ dnorm(0,.00001) #eld

b2.nest.rs ~ dnorm(0,.00001) #nest type

b3.flh.rs ~ dnorm(0,.00001) #field layer height

b4.int.rs ~ dnorm(0,.00001) #interaction

tau.g.rs ~ dgamma(.0001,.0001)

#model

for(s in 1:length(y.rs)){

y.rs[s]~dbin(p.rs[s],fledge.rs[s]) #recruit given number chicks fledged

p.rs[s]<-ilogit(alpha.rs[group.rs[s]]+b1.eld.rs*eld.rs[s]+b2.nest.rs*nest.rs[s]+b3.flh.rs*flh.rs[s])

} #close s

for(t in 1:max(group.rs)){ #add random effect

alpha.rs[t]~dnorm(alpha.g.rs, tau.g.rs)

} # close t

#### make predictions ####

#breeding success day 31 and day 1

#all other factors fixed at their mean values

bs.31<-0.7298*ilogit(alpha.g.bs+b1.eld.bs*31+b2.eld2.bs*961+b3.flh.bs*0.62+b4.nest.bs*0.792)

bs.1<-0.7298*ilogit(alpha.g.bs+b1.eld.bs+b2.eld2.bs+b3.flh.bs*0.62+b4.nest.bs*0.792)

bs.diff<-bs.1-bs.31#posterior distribution of the seasonal decline in breeding success

#clutch size day 31 and day 1

#all other factors fixed at their mean values

#muliplied by 0.100789 to convert to recruits per nest

cs.31<-0.100789*exp(alpha.g.cs+b1.eld.cs*31)

cs.1<-0.100789*exp(alpha.g.cs+b1.eld.cs)

cs.diff<-cs.1-cs.31 #posterior distribution of the seasonal decline in clutch size

#fledge per egg laid day 31 and day 1

#all other factors fixed at their mean values

f.31<-0.72207*ilogit(alpha.g.fs+b1.eld.fs*31+b2.age.fs*0.64+b3.flh.fs*0.705+b4.int.fs*31*0.64)

f.1<-0.72207*ilogit(alpha.g.fs+b1.eld.fs+b2.age.fs*0.64+b3.flh.fs*0.705+b4.int.fs*0.64)

f.diff<-f.1-f.31 #posterior distribution of the seasonal decline

#recruit per chick fledged day 31 and day 1

#all other factors fixed at their mean values

rec.31<-6.044*ilogit(alpha.g.rs+b1.eld.rs*31+b2.nest.rs*0.843+b3.flh.rs*0.65)

rec.1<-6.044*ilogit(alpha.g.rs+b1.eld.rs+b2.nest.rs*0.843+b3.flh.rs*0.65)

rec.diff<-rec.1-rec.31 #posterior distribution of the seasonal decline

#preditions of posterior distributions of the difference between seasonal declines for different components

bs.cs<-bs.diff-cs.diff

bs.fs<-bs.diff-f.diff

bs.rs<-bs.diff-rec.diff

cs.fs<-cs.diff-f.diff

cs.rs<-cs.diff-rec.diff

fs.rs<-f.diff-rec.diff

} #close model

Appendix 2 – Full candidate model Tables S1-S4

Table S1

Candidate set of AICc-ranked generalised linear mixed models for nest success showing all models with AICc<10.The full model included fixed factors ELD (egg laying date), ELD2, field layer height (FLH, short and tall), age of female (AgeF, young and old), and nest type (Nest, ground and roof), and year and individual identityas random effects. Additive effects are indicated by + and interactions by x; main effects are included in models with interactions. Models containing the three-way interaction also include the two-way interactions. The quadratic term ELD2 also includes the linear term ELD.

K = number of parameters in the model, AICc = difference in AICc relative to the best model, wi =AICc weight of the model.

Model / K / AICc / AICc / wi
ELD2 + FLH + Nest / 7 / 1360.11 / 0.00 / 0.07
ELD2 + AgeF + FLH + Nest / 8 / 1360.99 / 0.88 / 0.04
ELD2 + AgeFxNest + FLH / 9 / 1361.50 / 1.40 / 0.03
ELD2 + ELDxNest + FLH / 8 / 1361.58 / 1.47 / 0.03
ELD + FLH + Nest / 6 / 1361.70 / 1.59 / 0.03
ELD2 + ELDxFLH + Nest / 8 / 1361.97 / 1.86 / 0.03
ELD2 + AgeFxFLH + Nest / 9 / 1361.99 / 1.88 / 0.03
ELD2 + FLHxNest / 8 / 1362.11 / 2.00 / 0.02
ELD2 + AgeFxFLH + AgeFxNest / 10 / 1362.24 / 2.13 / 0.02
ELD2 + ELDxNest + AgeF + FLH / 9 / 1362.42 / 2.31 / 0.02
ELD + AgeF + FLH + Nest / 7 / 1362.65 / 2.54 / 0.02
ELD2 + ELDxFLH + AgeF + Nest / 9 / 1362.80 / 2.70 / 0.02
ELD2 + ELDxAgeF + FLH + Nest / 9 / 1362.88 / 2.77 / 0.02
ELD2 + FLHxNest + AgeF / 9 / 1363.00 / 2.89 / 0.02
ELD2 + ELDxNest + AgeFxNest + FLH / 10 / 1363.24 / 3.13 / 0.01
ELD + AgeFxNest + FLH / 8 / 1363.32 / 3.21 / 0.01
ELD2 + ELDxFLH + AgeFxNest / 10 / 1363.33 / 3.22 / 0.01
ELD2 + ELDxAgeF + AgeFxNest + FLH / 10 / 1363.33 / 3.22 / 0.01
ELDxNest + FLH / 7 / 1363.37 / 3.26 / 0.01
ELD2 + ELDxNest + AgeFxFLH / 10 / 1363.41 / 3.30 / 0.01
ELD2 + ELDxFLH + AgeFxFLH + Nest / 10 / 1363.48 / 3.37 / 0.01
ELD2 + ELDxFLH + ELDxNest / 9 / 1363.50 / 3.39 / 0.01
ELD2 + AgeFxNest + FLHxNest / 10 / 1363.53 / 3.42 / 0.01
ELD + AgeFxFLH + Nest / 8 / 1363.55 / 3.44 / 0.01
ELD2 + ELDxNest + FLHxNest / 9 / 1363.59 / 3.48 / 0.01
ELDxFLH + Nest / 7 / 1363.66 / 3.55 / 0.01
ELD2 + ELDxFLH + AgeFxFLH + AgeFxNest / 11 / 1363.69 / 3.58 / 0.01
ELD + FLHxNest / 7 / 1363.70 / 3.59 / 0.01
ELDxAgeF + FLH + Nest / 8 / 1363.80 / 3.69 / 0.01
ELD2 + ELDxAgeF + AgeFxFLH + Nest / 10 / 1363.92 / 3.81 / 0.01
ELD + AgeFxFLH + AgeFxNest / 9 / 1363.95 / 3.84 / 0.01
ELD2 + ELDxFLH + FLHxNest / 9 / 1363.98 / 3.88 / 0.01
ELD2 + AgeFxFLH + FLHxNest / 10 / 1363.99 / 3.88 / 0.01
ELD2 + ELDxNest + AgeFxFLH + AgeFxNest / 11 / 1363.99 / 3.89 / 0.01
ELD2 + ELDxAgeF + AgeFxFLH + AgeFxNest / 11 / 1364.12 / 4.01 / 0.01
ELD2 + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 1364.25 / 4.14 / 0.01
ELD2 + ELDxAgeF + ELDxNest + FLH / 10 / 1364.28 / 4.17 / 0.01
ELDxNest + AgeF + FLH / 8 / 1364.29 / 4.18 / 0.01
ELD2 + ELDxFLH + ELDxNest + AgeF / 10 / 1364.30 / 4.19 / 0.01
ELDxAgeF + AgeFxNest + FLH / 9 / 1364.30 / 4.19 / 0.01
ELD2 + ELDxNest + FLHxNest + AgeF / 10 / 1364.43 / 4.32 / 0.01
ELDxFLH + AgeF + Nest / 8 / 1364.58 / 4.47 / 0.01
ELD + FLHxNest + AgeF / 8 / 1364.65 / 4.54 / 0.01
ELD2 + ELDxAgeF + ELDxFLH + Nest / 10 / 1364.67 / 4.56 / 0.01
ELDxAgeF + AgeFxFLH + Nest / 9 / 1364.81 / 4.71 / 0.01
ELD2 + ELDxFLH + FLHxNest + AgeF / 10 / 1364.82 / 4.71 / 0.01
ELD2 + ELDxAgeF + FLHxNest / 10 / 1364.89 / 4.78 / 0.01
ELD2 + ELDxFLH + ELDxNest + AgeFxFLH / 11 / 1365.00 / 4.89 / 0.01
ELD2 + ELDxAgeF + ELDxNest + AgeFxNest + FLH / 11 / 1365.03 / 4.92 / 0.01
ELDxAgeF + AgeFxFLH + AgeFxNest / 10 / 1365.06 / 4.95 / 0.01
ELD2 + ELDxFLH + ELDxNest + AgeFxNest / 11 / 1365.11 / 5.01 / 0.01
ELD2 + ELDxAgeF + ELDxFLH + AgeFxNest / 11 / 1365.13 / 5.02 / 0.01
ELDxNest + AgeFxFLH / 9 / 1365.18 / 5.07 / 0.01
ELDxNest + AgeFxNest + FLH / 9 / 1365.20 / 5.10 / 0.01
ELDxFLH + AgeFxFLH + Nest / 9 / 1365.22 / 5.11 / 0.01
ELDxFLH + AgeFxNest / 9 / 1365.26 / 5.15 / 0.01
ELD2 + ELDxNest + AgeFxNest + FLHxNest / 11 / 1365.30 / 5.19 / 0.01
ELD2 + ELDxAgeF + ELDxNest + AgeFxFLH / 11 / 1365.32 / 5.21 / 0.01
ELD + AgeFxNest + FLHxNest / 9 / 1365.34 / 5.23 / 0.01
ELDxAgeF + ELDxNest + FLH / 9 / 1365.36 / 5.25 / 0.01
ELD2 + ELDxFLH + AgeFxNest + FLHxNest / 11 / 1365.36 / 5.25 / 0.01
ELDxFLH + ELDxNest / 8 / 1365.36 / 5.25 / 0.01
ELDxNest + FLHxNest / 8 / 1365.38 / 5.27 / 0.01
ELD2 + ELDxAgeF + AgeFxNest + FLHxNest / 11 / 1365.40 / 5.30 / 0.01
ELD2 + ELDxAgeF + ELDxFLH + AgeFxFLH + Nest / 11 / 1365.41 / 5.30 / 0.01
ELD2 + ELDxNest + AgeFxFLH + FLHxNest / 11 / 1365.41 / 5.30 / 0.01
ELD2 + ELDxFLH + AgeFxFLH + FLHxNest / 11 / 1365.50 / 5.39 / 0.01
ELD2 + ELDxFLH + ELDxNest + FLHxNest / 10 / 1365.51 / 5.41 / 0.01
ELD2 + ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest / 12 / 1365.52 / 5.41 / 0.01
ELD + AgeFxFLH + FLHxNest / 9 / 1365.55 / 5.44 / 0.01
ELD2 + ELDxAgeF + ELDxFLH + AgeFxFLH + AgeFxNest / 12 / 1365.56 / 5.45 / 0.01
ELDxFLH + AgeFxFLH + AgeFxNest / 10 / 1365.60 / 5.49 / 0.01
ELDxFLH + FLHxNest / 8 / 1365.67 / 5.56 / 0.01
ELDxAgeF + ELDxFLH + Nest / 9 / 1365.68 / 5.57 / 0.01
ELD2 + ELDxFLH + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 1365.71 / 5.60 / 0.00
ELDxAgeF + FLHxNest / 9 / 1365.81 / 5.70 / 0.00
ELD2 + ELDxAgeF + ELDxNest + AgeFxFLH + AgeFxNest / 12 / 1365.84 / 5.73 / 0.00
ELDxNest + AgeFxFLH + AgeFxNest / 10 / 1365.85 / 5.74 / 0.00
ELD + AgeFxFLH + AgeFxNest + FLHxNest / 10 / 1365.96 / 5.85 / 0.00
ELD2 + ELDxAgeF + AgeFxFLH + FLHxNest / 11 / 1365.97 / 5.86 / 0.00
ELD2 + ELDxNest + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 1366.00 / 5.90 / 0.00
ELDxAgeF + ELDxNest + AgeFxNest + FLH / 10 / 1366.10 / 5.99 / 0.00
ELD2 + ELDxAgeF + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 1366.13 / 6.02 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + ELDxNest / 11 / 1366.14 / 6.04 / 0.00
ELDxAgeF + ELDxFLH + AgeFxNest / 10 / 1366.18 / 6.07 / 0.00
ELDxFLH + ELDxNest + AgeF / 9 / 1366.26 / 6.16 / 0.00
ELD2 + ELDxAgeF + ELDxNest + FLHxNest / 11 / 1366.29 / 6.19 / 0.00
ELDxNest + FLHxNest + AgeF / 9 / 1366.30 / 6.19 / 0.00
ELD2 + ELDxFLH + ELDxNest + FLHxNest + AgeF / 11 / 1366.32 / 6.21 / 0.00
ELDxAgeF + AgeFxNest + FLHxNest / 10 / 1366.32 / 6.22 / 0.00
ELDxAgeF + ELDxNest + AgeFxFLH / 10 / 1366.37 / 6.27 / 0.00
ELDxAgeF + ELDxFLH + AgeFxFLH + Nest / 10 / 1366.46 / 6.35 / 0.00
ELDxFLH + FLHxNest + AgeF / 9 / 1366.59 / 6.49 / 0.00
ELDxAgeF + ELDxFLH + AgeFxFLH + AgeFxNest / 11 / 1366.66 / 6.55 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + FLHxNest / 11 / 1366.69 / 6.59 / 0.00
ELDxAgeF + AgeFxFLH + FLHxNest / 10 / 1366.82 / 6.72 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + ELDxNest + AgeFxNest / 12 / 1366.87 / 6.77 / 0.00
ELDxAgeF + ELDxNest + AgeFxFLH + AgeFxNest / 11 / 1366.88 / 6.77 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH / 12 / 1366.91 / 6.81 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH / 10 / 1366.93 / 6.82 / 0.00
ELD2 + ELDxFLH + ELDxNest + AgeFxFLH + FLHxNest / 12 / 1367.03 / 6.92 / 0.00
ELD2 + ELDxAgeF + ELDxNest + AgeFxNest + FLHxNest / 12 / 1367.06 / 6.95 / 0.00
ELDxAgeF + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 1367.07 / 6.97 / 0.00
ELD2 + ELDxFLH + ELDxNest + AgeFxNest + FLHxNest / 12 / 1367.15 / 7.04 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + AgeFxNest + FLHxNest / 12 / 1367.16 / 7.05 / 0.00
ELDxFLH + ELDxNest + AgeFxNest / 10 / 1367.17 / 7.06 / 0.00
ELDxNest + AgeFxFLH + FLHxNest / 10 / 1367.18 / 7.07 / 0.00
ELDxNest + AgeFxNest + FLHxNest / 10 / 1367.23 / 7.12 / 0.00
ELDxFLH + AgeFxFLH + FLHxNest / 10 / 1367.24 / 7.13 / 0.00
ELDxFLH + AgeFxNest + FLHxNest / 10 / 1367.29 / 7.18 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest / 10 / 1367.29 / 7.18 / 0.00
ELD2 + ELDxAgeF + ELDxNest + AgeFxFLH + FLHxNest / 12 / 1367.33 / 7.22 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest / 13 / 1367.37 / 7.26 / 0.00
ELDxAgeF + ELDxNest + FLHxNest / 10 / 1367.37 / 7.26 / 0.00
ELDxFLH + ELDxNest + FLHxNest / 9 / 1367.38 / 7.27 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + AgeFxFLH + FLHxNest / 12 / 1367.43 / 7.33 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest / 11 / 1367.55 / 7.44 / 0.00
ELD2 + ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest + FLHxNest / 13 / 1367.55 / 7.44 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + AgeFxFLH + AgeFxNest + FLHxNest / 13 / 1367.59 / 7.48 / 0.00
ELDxFLH + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 1367.62 / 7.51 / 0.00
ELDxAgeF + ELDxFLH + FLHxNest / 10 / 1367.70 / 7.59 / 0.00
ELD2 + ELDxAgeF + ELDxNest + AgeFxFLH + AgeFxNest + FLHxNest / 13 / 1367.85 / 7.75 / 0.00
ELDxNest + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 1367.86 / 7.75 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxNest / 11 / 1368.02 / 7.91 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH / 11 / 1368.10 / 7.99 / 0.00
ELDxAgeF + ELDxNest + AgeFxNest + FLHxNest / 11 / 1368.13 / 8.02 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + ELDxNest + FLHxNest / 12 / 1368.17 / 8.06 / 0.00
ELDxAgeF + ELDxFLH + AgeFxNest + FLHxNest / 11 / 1368.21 / 8.10 / 0.00
ELDxFLH + ELDxNest + FLHxNest + AgeF / 10 / 1368.28 / 8.17 / 0.00
ELD2 + FLHxNest + AgeF / 8 / 1368.40 / 8.29 / 0.00
ELDxAgeF + ELDxNest + AgeFxFLH + FLHxNest / 11 / 1368.41 / 8.30 / 0.00
ELDxAgeF + ELDxFLH + AgeFxFLH + FLHxNest / 11 / 1368.48 / 8.37 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest / 12 / 1368.55 / 8.44 / 0.00
ELDxAgeF + ELDxFLH + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 1368.69 / 8.58 / 0.00
ELDxAgeF + ELD xNest + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 1368.90 / 8.79 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + ELDxNest + AgeFxNest + FLHxNest / 13 / 1368.91 / 8.80 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH +
+ FLHxNest / 13 / 1368.94 / 8.84 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH + FLHxNest / 11 / 1368.95 / 8.84 / 0.00
ELD2 + AgeFxFLH + FLHxNest / 9 / 1369.14 / 9.03 / 0.00
ELDxFLH + ELDxNest + AgeFxNest + FLHxNest / 11 / 1369.20 / 9.09 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + FLHxNest / 11 / 1369.31 / 9.21 / 0.00
ELD2 + ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH +
+ AgeFxNest + FLHxNest / 14 / 1369.40 / 9.29 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 1369.57 / 9.46 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxNest + FLHxNest / 12 / 1370.05 / 9.94 / 0.00

Table S2

Candidate model set for clutch size. For details see legend for Table S1.

Model / K / AICc / AICc / wi
ELD / 3 / 49.78 / 0.00 / 0.21
ELD + FLH / 4 / 51.24 / 1.46 / 0.10
ELD + AgeF / 4 / 51.61 / 1.83 / 0.08
ELD + Nest / 4 / 51.79 / 2.02 / 0.08
ELD + AgeF + FLH / 5 / 53.11 / 3.33 / 0.04
ELD + FLH + Nest / 5 / 53.22 / 3.44 / 0.04
ELDxFLH / 5 / 53.22 / 3.44 / 0.04
ELD + AgeF + Nest / 5 / 53.63 / 3.85 / 0.03
ELDxAgeF / 5 / 53.64 / 3.87 / 0.03
ELDxNest / 5 / 53.81 / 4.03 / 0.03
ELDxFLH + AgeF / 6 / 55.07 / 5.30 / 0.01
ELD + AgeF + FLH + Nest / 6 / 55.09 / 5.31 / 0.01
ELD + AgeFxFLH / 6 / 55.14 / 5.36 / 0.01
intercept only / 2 / 55.15 / 5.37 / 0.01
ELDxAgeF + FLH / 6 / 55.15 / 5.37 / 0.01
ELD + FLHxNest / 6 / 55.18 / 5.40 / 0.01
ELDxFLH + Nest / 6 / 55.21 / 5.43 / 0.01
ELDxNest + FLH / 6 / 55.21 / 5.44 / 0.01
ELD + AgeFxNest / 6 / 55.48 / 5.71 / 0.01
FLH / 3 / 55.63 / 5.85 / 0.01
ELDxNest + AgeF / 6 / 55.64 / 5.87 / 0.01
ELDxAgeF + Nest / 6 / 55.67 / 5.89 / 0.01
AgeF / 3 / 55.80 / 6.02 / 0.01
AgeF + FLH / 4 / 56.53 / 6.75 / 0.01
ELD + AgeFxNest + FLH / 7 / 56.98 / 7.20 / 0.01
ELD + FLHxNest + AgeF / 7 / 57.05 / 7.27 / 0.01
ELDxFLH + AgeF + Nest / 7 / 57.07 / 7.29 / 0.01
ELDxNest + AgeF + FLH / 7 / 57.08 / 7.31 / 0.01
ELDxFLH + AgeFxFLH / 7 / 57.12 / 7.34 / 0.01
ELDxAgeF + ELDxFLH / 7 / 57.12 / 7.34 / 0.01
ELD + AgeFxFLH + Nest / 7 / 57.12 / 7.35 / 0.01
ELDxAgeF + FLH + Nest / 7 / 57.13 / 7.36 / 0.01
Nest / 3 / 57.14 / 7.36 / 0.01
ELDxNest + FLHxNest / 7 / 57.18 / 7.41 / 0.01
ELDxAgeF + AgeFxFLH / 7 / 57.19 / 7.41 / 0.01
ELDxFLH + FLHxNest / 7 / 57.19 / 7.41 / 0.01
ELDxFLH + ELDxNest / 7 / 57.23 / 7.46 / 0.01
ELDxNest + AgeFxNest / 7 / 57.48 / 7.70 / 0.01
ELDxAgeF + AgeFxNest / 7 / 57.53 / 7.76 / 0.01
FLH + Nest / 4 / 57.65 / 7.87 / 0.01
ELDxAgeF + ELDxNest / 7 / 57.69 / 7.91 / 0.01
AgeF + Nest / 4 / 57.82 / 8.04 / 0.01
AgeFxFLH / 5 / 58.53 / 8.76 / 0.00
AgeF + FLH + Nest / 5 / 58.55 / 8.77 / 0.00
ELDxNest + AgeFxNest + FLH / 8 / 58.94 / 9.16 / 0.00
ELD + AgeFxNest + FLHxNest / 8 / 58.95 / 9.18 / 0.00
ELDxFLH + AgeFxNest / 8 / 58.96 / 9.19 / 0.00
ELD + AgeFxFLH + AgeFxNest / 8 / 59.00 / 9.23 / 0.00
ELDxAgeF + AgeFxNest + FLH / 8 / 59.03 / 9.25 / 0.00
ELDxFLH + FLHxNest + AgeF / 8 / 59.04 / 9.27 / 0.00
ELDxNest + FLHxNest + AgeF / 8 / 59.05 / 9.28 / 0.00
ELDxFLH + ELDxNest + AgeF / 8 / 59.09 / 9.31 / 0.00
ELD + AgeFxFLH + FLHxNest / 8 / 59.10 / 9.32 / 0.00
ELDxAgeF + FLHxNest / 8 / 59.10 / 9.33 / 0.00
ELDxFLH + AgeFxFLH + Nest / 8 / 59.12 / 9.34 / 0.00
ELDxAgeF + ELDxFLH + Nest / 8 / 59.12 / 9.34 / 0.00
ELDxNest + AgeFxFLH / 8 / 59.13 / 9.35 / 0.00
ELDxAgeF + ELDxNest + FLH / 8 / 59.14 / 9.36 / 0.00
ELDxAgeF + ELDxFLH + AgeFxFLH / 8 / 59.17 / 9.40 / 0.00
ELDxAgeF + AgeFxFLH + Nest / 8 / 59.18 / 9.40 / 0.00
ELDxFLH + ELDxNest + FLHxNest / 8 / 59.21 / 9.44 / 0.00
ELDxAgeF + ELDxNest + AgeFxNest / 8 / 59.53 / 9.75 / 0.00
AgeFxNest / 5 / 59.59 / 9.81 / 0.00
FLHxNest / 5 / 59.68 / 9.91 / 0.00

Table S3

Candidate model set for fledging success. For details see legend for Table S1.

Model / K / AICc / AICc / wi
ELDxAgeF + AgeFxFLH / 8 / 667.80 / 0.00 / 0.11
ELDxAgeF + FLH / 7 / 667.89 / 0.08 / 0.11
ELDxAgeF + FLH + Nest / 8 / 669.34 / 1.54 / 0.05
ELDxAgeF + AgeFxFLH + Nest / 9 / 669.38 / 1.57 / 0.05
ELDxAgeF + ELDxFLH + AgeFxFLH / 9 / 669.57 / 1.77 / 0.05
ELDxAgeF + ELDxFLH / 8 / 669.94 / 2.13 / 0.04
ELDxAgeF + AgeFxFLH + AgeFxNest / 10 / 670.06 / 2.26 / 0.04
ELDxAgeF + AgeFxNest + FLH / 9 / 670.58 / 2.77 / 0.03
ELDxAgeF + AgeFxFLH + FLHxNest / 10 / 670.72 / 2.92 / 0.03
ELDxAgeF + FLHxNest / 9 / 670.74 / 2.94 / 0.03
ELD + AgeFxFLH / 7 / 670.79 / 2.99 / 0.03
ELDxAgeF / 6 / 670.90 / 3.10 / 0.02
ELDxAgeF + ELDxFLH + AgeFxFLH + Nest / 10 / 671.06 / 3.26 / 0.02
ELDxAgeF + ELDxFLH + Nest / 9 / 671.37 / 3.57 / 0.02
ELDxAgeF + ELDxNest + FLH / 9 / 671.41 / 3.61 / 0.02
ELDxAgeF + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 671.44 / 3.63 / 0.02
ELDxAgeF + ELDxNest + AgeFxFLH / 10 / 671.46 / 3.65 / 0.02
ELDxAgeF + ELDxFLH + AgeFxFLH + AgeFxNest / 11 / 671.66 / 3.86 / 0.02
ELD + AgeF + FLH / 6 / 671.87 / 4.07 / 0.01
ELDxAgeF + AgeFxNest + FLHxNest / 10 / 671.95 / 4.14 / 0.01
ELDxAgeF + ELDxNest + AgeFxFLH + AgeFxNest / 11 / 672.08 / 4.28 / 0.01
ELD + AgeFxFLH + Nest / 8 / 672.39 / 4.59 / 0.01
ELDxAgeF + ELDxFLH + AgeFxFLH + FLHxNest / 11 / 672.45 / 4.65 / 0.01
ELDxAgeF + ELDxFLH + AgeFxNest / 10 / 672.62 / 4.81 / 0.01
ELDxFLH + AgeFxFLH / 8 / 672.62 / 4.82 / 0.01
ELDxAgeF + ELDxNest + AgeFxNest + FLH / 10 / 672.63 / 4.82 / 0.01
ELDxAgeF + ELDxFLH + FLHxNest / 10 / 672.79 / 4.99 / 0.01
ELDxAgeF + ELDxNest + AgeFxFLH + FLHxNest / 11 / 672.81 / 5.01 / 0.01
ELDxAgeF + ELDxNest + FLHxNest / 10 / 672.82 / 5.02 / 0.01
ELDxAgeF + Nest / 7 / 672.84 / 5.04 / 0.01
ELD + FLH / 5 / 673.06 / 5.26 / 0.01
ELDxAgeF + ELDxFLH + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 673.09 / 5.29 / 0.01
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH / 11 / 673.15 / 5.35 / 0.01
ELD + AgeFxFLH + AgeFxNest / 9 / 673.26 / 5.45 / 0.01
ELD + AgeF+FLH + Nest / 7 / 673.36 / 5.56 / 0.01
ELDxAgeF + ELDxFLH + ELDxNest / 10 / 673.46 / 5.66 / 0.01
ELDxAgeF + ELDxNest + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 673.46 / 5.66 / 0.01
ELD + AgeFxFLH + FLHxNest / 9 / 673.46 / 5.66 / 0.01
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest / 12 / 673.53 / 5.72 / 0.01
ELDxAgeF + AgeFxNest / 8 / 673.82 / 6.01 / 0.01
ELD + AgeF + FLH + ELDxFLH / 7 / 673.93 / 6.13 / 0.01
ELDxAgeF + ELDxNest + AgeFxNest + FLHxNest / 11 / 674.00 / 6.20 / 0.01
ELDxAgeF + ELDxFLH + AgeFxNest + FLHxNest / 11 / 674.01 / 6.21 / 0.01
ELD + AgeF / 5 / 674.14 / 6.34 / 0.01
ELDxFLH + AgeFxFLH + Nest / 9 / 674.15 / 6.35 / 0.01
ELD + AgeFxFLH + AgeFxNest + FLHxNest / 10 / 674.38 / 6.58 / 0.01
ELDxNest + AgeFxFLH / 9 / 674.42 / 6.61 / 0.01
ELD + FLHxNest + AgeF / 8 / 674.49 / 6.68 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH + FLHxNest / 12 / 674.55 / 6.75 / 0.00
ELD + FLH + Nest / 6 / 674.57 / 6.76 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxNest / 11 / 674.64 / 6.84 / 0.00
ELDxAgeF + ELDxNest / 8 / 674.80 / 7.00 / 0.00
ELD + AgeFxNest + FLH / 8 / 674.85 / 7.04 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + FLHxNest / 11 / 674.89 / 7.08 / 0.00
ELDxFLH + AgeFxFLH + AgeFxNest / 10 / 674.94 / 7.13 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest + + FLHxNest / 13 / 674.99 / 7.19 / 0.00
ELDxFLH / 6 / 675.07 / 7.26 / 0.00
ELDxNest + AgeFxFLH + AgeFxNest / 10 / 675.09 / 7.29 / 0.00
ELDxFLH + AgeFxFLH + FLHxNest / 10 / 675.26 / 7.46 / 0.00
ELDxNest + AgeF + FLH / 8 / 675.38 / 7.57 / 0.00
ELDxFLH + AgeF + Nest / 8 / 675.40 / 7.60 / 0.00
ELDxNest + AgeFxFLH + FLHxNest / 10 / 675.50 / 7.69 / 0.00
ELD / 4 / 675.52 / 7.72 / 0.00
ELD + FLHxNest / 7 / 675.59 / 7.79 / 0.00
ELDxAgeF + ELDxNest + AgeFxNest / 9 / 675.90 / 8.09 / 0.00
ELD + AgeFxNest + FLHxNest / 9 / 675.95 / 8.14 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxNest + FLHxNest / 12 / 676.05 / 8.24 / 0.00
ELD + AgeF + Nest / 6 / 676.07 / 8.27 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH / 10 / 676.09 / 8.29 / 0.00
ELDxFLH + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 676.11 / 8.30 / 0.00
ELDxNest + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 676.22 / 8.41 / 0.00
ELDxNest + FLHxNest + AgeF / 9 / 676.51 / 8.71 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest / 11 / 676.53 / 8.73 / 0.00
ELDxFLH + Nest / 7 / 676.54 / 8.73 / 0.00
ELDxFLH + FLHxNest + AgeF / 9 / 676.55 / 8.75 / 0.00
ELDxNest + FLH / 7 / 676.60 / 8.80 / 0.00
ELDxNest + AgeFxNest + FLH / 9 / 676.75 / 8.94 / 0.00
ELDxFLH + AgeFxNest / 9 / 676.90 / 9.09 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH + FLHxNest / 11 / 677.23 / 9.42 / 0.00
ELD + AgeFxNest / 7 / 677.36 / 9.56 / 0.00
ELDxFLH + ELDxNest + AgeF / 9 / 677.41 / 9.60 / 0.00
ELD + Nest / 5 / 677.45 / 9.65 / 0.00
ELDxFLH + FLHxNest / 8 / 677.59 / 9.79 / 0.00
ELDxNest + FLHxNest / 8 / 677.64 / 9.84 / 0.00

Table S4

Candidate model set for recruitment success. For details see legend for Table S1.

Model / K / AICc / AICc / wi
ELD + FLH + Nest / 6 / 891.36 / 0.00 / 0.10
ELD + AgeF + FLH + Nest / 7 / 892.07 / 0.71 / 0.07
ELDxFLH + Nest / 7 / 893.25 / 1.88 / 0.04
ELD + FLHxNest / 7 / 893.30 / 1.94 / 0.04
ELDxNest + FLH / 7 / 893.33 / 1.97 / 0.04
ELD + AgeFxNest + FLH / 8 / 893.43 / 2.06 / 0.03
FLH + Nest / 5 / 893.44 / 2.08 / 0.03
ELD + AgeFxFLH + Nest / 8 / 893.53 / 2.16 / 0.03
ELDxAgeF + FLH + Nest / 8 / 893.60 / 2.23 / 0.03
ELDxFLH + AgeF + Nest / 8 / 894.02 / 2.66 / 0.03
ELD + FLHxNest + AgeF / 8 / 894.03 / 2.67 / 0.03
ELDxNest + AgeF + FLH / 8 / 894.08 / 2.71 / 0.03
ELD + AgeFxFLH + AgeFxNest / 9 / 894.66 / 3.30 / 0.02
ELDxAgeF + AgeFxNest + FLH / 9 / 894.90 / 3.54 / 0.02
ELDxAgeF + AgeFxFLH + Nest / 9 / 895.11 / 3.74 / 0.01
ELDxFLH + FLHxNest / 8 / 895.18 / 3.82 / 0.01
ELDxFLH + ELDxNest / 8 / 895.25 / 3.89 / 0.01
ELDxNest + FLHxNest / 8 / 895.26 / 3.89 / 0.01
AgeF + FLH + Nest / 6 / 895.26 / 3.90 / 0.01
ELD + AgeFxNest + FLHxNest / 9 / 895.28 / 3.92 / 0.01
ELDxFLH + AgeFxFLH + Nest / 9 / 895.36 / 4.00 / 0.01
FLH x Nest / 6 / 895.37 / 4.00 / 0.01
ELDxFLH + AgeFxNest / 9 / 895.39 / 4.03 / 0.01
ELD + AgeFxFLH + FLHxNest / 9 / 895.46 / 4.09 / 0.01
ELDxNest + AgeFxNest + FLH / 9 / 895.48 / 4.11 / 0.01
ELDxAgeF + ELDxFLH + Nest / 9 / 895.52 / 4.15 / 0.01
ELDxNest + AgeFxFLH / 9 / 895.53 / 4.17 / 0.01
ELDxAgeF + FLHxNest / 9 / 895.56 / 4.20 / 0.01
ELDxAgeF + ELDxNest + FLH / 9 / 895.61 / 4.25 / 0.01
ELDxFLH + FLHxNest + AgeF / 9 / 895.98 / 4.62 / 0.01
ELD + FLH / 5 / 896.01 / 4.65 / 0.01
ELDxNest + FLHxNest + AgeF / 9 / 896.03 / 4.66 / 0.01
ELDxFLH + ELDxNest + AgeF / 9 / 896.05 / 4.69 / 0.01
ELD + AgeF + FLH / 6 / 896.06 / 4.70 / 0.01
ELDxAgeF + AgeFxFLH + AgeFxNest / 10 / 896.20 / 4.83 / 0.01
AgeFxFLH + Nest / 7 / 896.28 / 4.91 / 0.01
ELD + AgeFxFLH + AgeFxNest + FLHxNest / 10 / 896.39 / 5.03 / 0.01
ELDxFLH + AgeFxFLH + AgeFxNest / 10 / 896.49 / 5.13 / 0.01
AgeFxNest + FLH / 7 / 896.68 / 5.31 / 0.01
ELDxNest + AgeFxFLH + AgeFxNest / 10 / 896.72 / 5.35 / 0.01
ELDxAgeF + AgeFxNest + FLHxNest / 10 / 896.75 / 5.39 / 0.01
ELDxAgeF + ELDxFLH + AgeFxNest / 10 / 896.84 / 5.47 / 0.01
ELDxAgeF + ELDxFLH + AgeFxFLH + Nest / 10 / 896.88 / 5.52 / 0.01
ELDxAgeF + ELDxNest + AgeFxNest + FLH / 10 / 896.96 / 5.60 / 0.01
ELDxAgeF + AgeFxFLH + FLHxNest / 10 / 897.04 / 5.68 / 0.01
ELDxAgeF + ELDxNest + AgeFxFLH / 10 / 897.13 / 5.76 / 0.01
ELDxFLH + ELDxNest + FLHxNest / 9 / 897.18 / 5.82 / 0.01
FLHxNest + AgeF / 7 / 897.20 / 5.83 / 0.01
ELDxFLH + AgeFxNest + FLHxNest / 10 / 897.25 / 5.88 / 0.01
ELDxFLH + AgeFxFLH + FLHxNest / 10 / 897.29 / 5.92 / 0.01
ELDxNest + AgeFxNest + FLHxNest / 10 / 897.33 / 5.97 / 0.01
ELDxFLH + ELDxNest + AgeFxFLH / 10 / 897.40 / 6.04 / 0.01
AgeFxFLH + AgeFxNest / 8 / 897.42 / 6.06 / 0.01
ELDxFLH + ELDxNest + AgeFxNest / 10 / 897.45 / 6.08 / 0.01
ELDxNest + AgeFxFLH + FLHxNest / 10 / 897.45 / 6.09 / 0.01
ELDxAgeF + FLH / 7 / 897.47 / 6.11 / 0.01
ELDxAgeF + ELDxFLH + FLHxNest / 10 / 897.48 / 6.11 / 0.01
ELDxAgeF + ELDxFLH + ELDxNest / 10 / 897.56 / 6.19 / 0.01
ELDxAgeF + ELDxNest + FLHxNest / 10 / 897.57 / 6.21 / 0.01
ELD + AgeFxFLH / 7 / 897.58 / 6.22 / 0.01
ELDxFLH / 6 / 897.90 / 6.54 / 0.00
ELDxAgeF + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 897.92 / 6.56 / 0.00
ELDxAgeF + ELDxFLH + AgeFxFLH + AgeFxNest / 11 / 897.96 / 6.60 / 0.00
ELDxFLH + ELDxNest + FLHxNest + AgeF / 10 / 898.01 / 6.64 / 0.00
ELDxFLH + AgeF / 7 / 898.03 / 6.67 / 0.00
FLH / 4 / 898.04 / 6.68 / 0.00
AgeFxFLH + FLHxNest / 8 / 898.17 / 6.80 / 0.00
ELDxFLH + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 898.20 / 6.84 / 0.00
ELDxAgeF + ELDxNest + AgeFxFLH + AgeFxNest / 11 / 898.26 / 6.90 / 0.00
ELDxNest + AgeFxFLH + AgeFxNest + FLHxNest / 11 / 898.45 / 7.08 / 0.00
AgeFxNest + FLHxNest / 8 / 898.52 / 7.16 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest / 11 / 898.55 / 7.19 / 0.00
ELDxAgeF + ELDxFLH + AgeFxNest + FLHxNest / 11 / 898.69 / 7.32 / 0.00
ELDxAgeF + ELDxFLH + AgeFxFLH + FLHxNest / 11 / 898.81 / 7.45 / 0.00
ELDxAgeF + ELDxNest + AgeFxNest + FLHxNest / 11 / 898.82 / 7.45 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxNest / 11 / 898.90 / 7.53 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH / 11 / 898.94 / 7.57 / 0.00
ELDxAgeF + AgeFxFLH / 8 / 899.05 / 7.68 / 0.00
ELDxAgeF + ELDxNest + AgeFxFLH + FLHxNest / 11 / 899.05 / 7.69 / 0.00
AgeFxFLH + AgeFxNest + FLHxNest / 9 / 899.11 / 7.74 / 0.00
ELDxFLH + ELDxNest + AgeFxNest + FLHxNest / 11 / 899.31 / 7.94 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH + FLHxNest / 11 / 899.33 / 7.96 / 0.00
ELDxAgeF + ELDxFLH / 8 / 899.41 / 8.05 / 0.00
ELD x FLH + AgeF x FLH / 8 / 899.46 / 8.09 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + FLHxNest / 11 / 899.52 / 8.16 / 0.00
ELD + Nest / 5 / 899.53 / 8.16 / 0.00
AgeF + FLH / 5 / 899.56 / 8.20 / 0.00
ELDxAgeF + ELDxFLH + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 899.66 / 8.30 / 0.00
ELDxAgeF + ELDxNest + AgeFxFLH + AgeFxNest + FLHxNest / 12 / 899.99 / 8.63 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH + AgeFxNest / 12 / 900.02 / 8.65 / 0.00
ELDxFLH + ELDxNest + AgeFxFLH + AexNest + FLH x Nest / 12 / 900.27 / 8.91 / 0.00
AgeFxFLH / 6 / 900.64 / 9.27 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxNest + FLHxNest / 12 / 900.76 / 9.39 / 0.00
ELD + AgeF + Nest / 6 / 900.80 / 9.43 / 0.00
ELDxAgeF + ELDxFLH + ELDxNest + AgeFxFLH + FLHxNest / 12 / 900.86 / 9.50 / 0.00
ELDxAgeF + ELDxFLH + AgeFxFLH / 9 / 900.87 / 9.50 / 0.00

1