Calc H 2012 Final Study Guide

Name______Period______

Find the location of the indicated absolute extremum for the function.

2) Minimum

2) ______

Find the extreme values of the function on the interval and where they occur. Identify any critical points that are not stationary points.

4) f(x) = , - 8 ≤ x ≤ 3 4) ______

Find the extreme values of the function and where they occur.

6) y = 6) ______

A) The minimum is 0 at x = 1. The maximum is 0 at x = -1.

B) The minimum is 0 at x = 0.

C) The maximum is 0 at x = 0.

D) The minimum is - at x = -1. The maximum is at x = 1.

Give an appropriate answer.

8) Find the value or values of c that satisfy = (c) for the function f(x) = x + on the interval [3, 16].

8) ______

A) 0, 4 B) - 4, 4 C) 4 D) 3, 16

Find the local extrema.

9) k(x) = 3x2 + 12x + 9 9) ______

10) g(x) = -4x2 - 40x - 98 10) ______

11) y = - 18 + 9 11) ______

12) f(x) = 12) ______

Find all possible functions with the given derivative.

13) f'(x) = 9 - 14x + 7 13) ______

14) f'(x) = 14) ______

Find the function with the given derivative whose graph passes through the point P.

17) f'(x) = 4x - 12 + 7 cos x, P(0, 9) 17) ______

Use the Concavity Test to find the intervals where the graph of the function is concave up.

18) y = -3x2 + 18x + 4 18) ______

20) y = 5x - 6 20) ______

Use the graph of f to estimate where f'' is 0, positive, and negative.

22)

22) ______

Use the Second Derivative Test to find the local extrema for the function.

23) y = 45 - 3 23) ______

24) y = + 3x - 1 24) ______

Use the given derivative of the function to find the local extrema of the function.

25) y' = (x + 1)(x + 3) 25) ______

Sketch a graph of a single function that has these properties.

28) Using the following properties of a twice-differentiable function y = f(x), select a possible graph of f.

28) ______

Solve the problem analytically.

30) Of all numbers whose difference is 4, find the two that have the minimum product. 30) ______

Solve the problem.

31) A carpenter is building a rectangular room with a fixed perimeter of What are the dimensions of the largest room that can be built? What is its area? 31) ______

32) Find the dimensions that produce the maximum floor area for a one-story house that is rectangular in shape and has a perimeter of 159 ft. Round to the nearest hundredth, if necessary. 32) ______

Find the linearization L(x) of f(x) at x = a.

34) f(x) = x + , a = 3 34) ______

Solve.

36) Find dy given y = 8 + 5x - 4. 36) ______

Find the differential.

38) d(csc(6 - 1)) 38) ______

Solve the problem.

39) The radius of a right circular cylinder is increasing at the rate of , while the height is decreasing at the rate of . At what rate is the volume of the cylinder changing when the radius is 17 in. and the height is 5 in.?

39) ______

Use a finite approximation to estimate the area of the region enclosed between the graph of f and the x-axis for a ≤ x ≤ b.

42) f(x) = , a = 1, b = 5

Use MRAM with two rectangles of equal width. 42) ______

A) B) C) D)

Use a calculator or computer program to solve the problem.

43) Use RRAM to estimate the area of the region enclosed between the graph of and the x-axis for 0 ≤ x ≤ 2; n = 50. 43) ______

44) Use RAM to estimate the area of the region enclosed between the graph of and the x-axis for 0 ≤ x ≤ 4 44) ______

45) Use RAM to estimate the area of the region enclosed between the graph of and the x-axis for 1 ≤ x ≤ 8 45) ______

Express the limit as a definite integral.

47) △, [3, 5] 47) ______

Use NINT on a calculator to find the numerical integral of the function over the specified interval.

49) y = 6tan x ; from x = 0 to x = 49) ______

USE NINT to find the average value of the function on the interval. At what point in the interval does the function assume its average value?

50) y = , [0, 3.87298335] 50) ______

51) y = - 6 - 1, [0, 3.46410162] 51) ______

Find the average value of the function without integrating, by appealing to the geometry region between the graph and the x-axis.

53) f(t) = 2 - , [-2, 2]

53) ______

Find the average value over the given interval.

54) y = ; [1, e] 54) ______

55) y = 10 sin x; [0, π] 55) ______

Find dy/dx.

56) 56) ______

57) 57) ______

58) 58) ______

Evaluate the integral.

59) dx 59) ______

60) dx 60) ______

Find the total area of the region between the curve and the x-axis.

61) y = 2x - ; 0 ≤ x ≤ 2 61) ______

Use NINT to solve the problem.

64) Evaluate . 64) ______

A) 0.05048 B) 0.88623 C) 0.00248 D) 0.00415

65) Evaluate dx. 65) ______

Solve the problem.

68) A rectangular swimming pool is being constructed, 18 feet long and 100 feet wide. The depth of the pool is measured at 3-foot intervals across the width of the pool. Estimate the volume of water in the pool using the Trapezoidal Rule.

68) ______

Use the Trapezoidal Rule to estimate the integral.

69) , n = 4 69) ______

Evaluate the integral.

71) dt 71) ______

Evaluate the integral using the given substitution.

73) dt, u = 1 - sin 73) ______

74) , u = 8x + 12 74) ______

Evaluate the integral.

76) dx 76) ______

77) 77) ______

78) 78) ______

Evaluate the definite integral by making a u-substitution and integrating from u(a) to u(b).

79) dx 79) ______

Use tabular integration to find the antiderivative.

82) 82) ______

Find the area of the shaded region.

83) f(x) = + - 6x

83) ______

84) f(x) = - + + 16x

84) ______

85)

y = - 2x 85) ______

86) y = 2 + x - 6 y = - 4

86) ______

Find the area of the regions enclosed by the lines and curves.

88) y = 9x - and y = 20 88) ______

89) About the x-axis

2) ______

A) 8π B) 4π C) 16π D) 14π

90) About the y-axis

3) ______

A) π B) π C) π D) π

Theorem:

1.  MVT

2.  FCT Part I and II


Key:

2) x = -2

4) Maximum value is at x = - 8; minimum value is at x = 3

6) The minimum is - at x = -1. The maximum is at x = 1.

8) 4

9) Local minimum at (-2, -3)

10) Local maximum at (-5, 2)

11) Local minima at (3, -72), (- 3, -72); local maximum at (0, 9)

12) No local extrema

13) 3 - 7 + 7x + C

14) 168 ln x + C

17) 2 - 12x + 7 sin x + 9

18) None

20) None

22) Zero: x = 0; positive: (0, ∞); negative: (-∞, 0)

23) Local minimum: (- 3, - 486),local maximum: (3, 486)

24) Local minimum:

25) Local maximum at x = -3; local minimum at x = -1

28)

30) 2 and - 2

31) 125 ft × 125 ft; 15,625

32) 39.75 ft × 39.75 ft

34) L(x) = x +

36) (16x + 5) dx

38) - 12x csc(6 - 1) cot(6 - 1) dx

39) 323π in.3/s

42)

43) 1.336

44) 25.333

45) 2.0794

47) C) dx

49) 0.86304469

50) - , at x = 2.23606798

51) -25, at x = 2

53)

54) C)

55)

56) 8

57)

58)

59) 15 - ln 16

60) 2 + 4π

61) C)

64) 0.00415

65) ≈ 1.133

68) 12,300

69) - π

71) + 7 cos t + C

73) - + C

74) + C

76) + C

77) - cos (9x - 8) + C

78) - cot (10θ + 5) + C

79) C) - 18

82) [ - 7x + 7] + C

83)

84)

85)

86)

88) C)

89) C) 16π

90)C) π

11