Appendix B. ANOVA results cited in the text.
(All statistical analyses were performed using R)
(Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems)
A.1.a. Effect of pedo-climatic factors on relative SOC stock differences (whole database)
Model=lme(SOCrel~texture*aridity, random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 0.31 / 0.82
aridity / 1 / 3.79 / 0.06
texture x aridity / 3 / 0.18 / 0.91
Model =lme(SOCrel~texture*precipitation*temperature, random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 0.41 / 0.75
annual precipitation / 1 / 3.06 / 0.09
mean annual temperature / 1 / 0.01 / 0.96
texture x precipitation / 3 / 0.39 / 0.76
texture x temperature / 3 / 0.37 / 0.77
precipitation x temperature / 1 / 0.01 / 0.98
texture x precipitation x temperature / 3 / 0.20 / 0.90
A.1.b. Effect of pedo-climatic factors on absolute SOC stock differences (whole database)
Model= lme(SOCabs~texture*aridity, random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 0.47 / 0.99
aridity / 1 / 2.33 / 0.13
texture x aridity / 3 / 0.17 / 0.92
Model =lme(SOCabs~texture*precipitation*temperature, random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 0.02 / 0.99
annual precipitation / 1 / 1.60 / 0.21
mean annual temperature / 1 / 0.04 / 0.84
texture x precipitation / 3 / 0.40 / 0.75
texture x temperature / 3 / 0.67 / 0.57
precipitation x temperature / 1 / 0.16 / 0.69
texture x precipitation x temperature / 3 / 0.67 / 0.57
A.2. Effect of pedo-climatic factors on relative SOC stock differences (mean value per site)
Model=lme(SOCrel~texture*aridity, random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 0.40 / 0.76
aridity / 1 / 2.40 / 0.14
texture x aridity / 3 / 0.23 / 0.88
Model =lme(SOCrel~texture*precipitation*temperature, random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 0.37 / 0.77
annual precipitation / 1 / 2.10 / 0.19
mean annual temperature / 1 / 0.01 / 0.97
texture x precipitation / 3 / 0.37 / 0.77
texture x temperature / 3 / 0.17 / 0.92
precipitation x temperature / 1 / 0.02 / 0.88
texture x precipitation x temperature / 3 / 0.23 / 0.87
A.3.a. Effect of pedo-climatic factors on relative SOC stock differences (reduced database)
Model=lme(SOCrel~texture*aridity, random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 1.08 / 0.44
aridity / 1 / 1.36 / 0.30
texture x aridity / 3 / 0.09 / 0.96
Model =lme(SOCrel~texture+precipitation+temperature+texture*precipitation+texture*temperature,random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 1.04 / 0.60
annual precipitation / 1 / 2.17 / 0.38
mean annual temperature / 1 / 0.04 / 0.88
texture x precipitation / 3 / 0.43 / 0.78
texture x temperature / 3 / 0.33 / 0.82
A.3.b. Effect of pedo-climatic factors on absolute SOC stock differences (reduced database)
Model= lme(SOCabs~texture*aridity, random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 1.27 / 0.38
aridity / 1 / 0.55 / 0.49
texture x aridity / 3 / 0.18 / 0.91
Model =lme(SOCabs~texture*precipitation*temperature, random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 1.63 / 0.35
annual precipitation / 1 / 1.12 / 0.37
mean annual temperature / 1 / 0.01 / 0.92
texture x precipitation / 3 / 1.02 / 0.49
texture x temperature / 3 / 0.11 / 0.76
B.1. Effect of pedo-climatic factors and relative yearly C input differences on relative SOC stock differences (reduced database)
Model=lme(SOCrel~texture*aridity*DIrel,random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 1.32 / 0.36
aridity / 1 / 1.66 / 0.25
Direl / 1 / 9.51 / 0.01
texture x aridity / 3 / 0.11 / 0.95
texture x Direl / 3 / 0.13 / 0.94
aridity X Direl / 1 / 0.08 / 0.78
texture x aridity x Direl / 3 / 1.32 / 0.31
Model =lme(SOCrel~texture+precipitation+temperature+DIrel+texture*precipitation+texture*temperature+texture*DIrel+precipitation*DIrel+temperature*DIrel,random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 1.17 / 0.58
annual precipitation / 1 / 2.45 / 0.36
mean annual temperature / 1 / 0.04 / 0.87
Direl / 1 / 7.76 / 0.01
texture x precipitation / 1 / 0.10 / 0.95
texture x temperature / 3 / 0.07 / 0.97
texture x Direl / 1 / 0.38 / 0.77
precipitation x Direl / 3 / 0.05 / 0.82
temperature x Direl / 3 / 1.98 / 0.18
B.2. Effect of pedo-climatic factors on absolute SOC stock differences (reduced database)
Model= lme(SOCabs~texture*aridity*DIabs,random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 0.66 / 0.61
aridity / 1 / 0.42 / 0.54
DIabs / 1 / 4.97 / 0.04
texture x aridity / 3 / 0.04 / 0.99
texture x DIabs / 3 / 0.20 / 0.89
aridity X DIabs / 1 / 0.09 / 0.77
texture x aridity x DIabs / 3 / 1.12 / 0.37
Model= lme(SOCabs~texture+precipitation+temperature+DIabs+texture*precipitation+texture*temperature+texture*DIabs+precipitation*DIabs+temperature*DIabs,random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 1.49 / 0.53
annual precipitation / 1 / 1.07 / 0.49
mean annual temperature / 1 / 0.01 / 0.94
DIabs / 1 / 4.78 / 0.04
texture x precipitation / 1 / 0.53 / 0.74
texture x temperature / 3 / 0.32 / 0.83
texture x DIabs / 1 / 0.41 / 0.75
precipitation x DIabs / 3 / 0.11 / 0.75
temperature x DIabs / 3 / 1.45 / 0.25
C.1. Effect of pedo-climatic factors on relative yearly C input differences (reduced database)
Model= lme(DIrel~texture*aridity,random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 4.53 / 0.07
aridity / 1 / 1.82 / 0.24
texture x aridity / 3 / 0.04 / 0.99
Model= lme(DIrel~texture+precipitation+temperature+precipitation*temperature+texture*temperature,random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 5.05 / 0.11
annual precipitation / 1 / 0.20 / 0.18
mean annual temperature / 1 / 0.13 / 0.74
precipitation x temperature / 1 / 0.14 / 0.73
texture x temperature / 3 / 1.32 / 0.41
C.2. Effect of pedo-climatic factors on absolute yearly C input differences (reduced database)
Model= lme(DIabs~texture*aridity,random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 2.24 / 0.20
aridity / 1 / 0.34 / 0.58
texture x aridity / 3 / 0.28 / 0.84
Model= lme(DIabs~texture+precipitation+temperature+precipitation*temperature+ texture*temperature,random= ~1|study)
Results
ANOVAVariable / df / F / P
texture / 3 / 5.18 / 0.11
annual precipitation / 1 / 3.42 / 0.16
mean annual temperature / 1 / 0.03 / 0.88
precipitation x temperature / 1 / 0.10 / 0.78
texture x temperature / 3 / 2.61 / 0.23