11

MS -594-Revised

ESM - Electronic Supplementary Material

Cellulose Swelling by Protic Solvents: Which Properties of the Biopolymer and the Solvent Matter?

Omar A. El Seoud,* Ludmila C. Fidale; Niara Ruiz; Maria Luiza O. D’Almeida; Elisabete Frollini

Sources of solvent properties

The following shows details of the solvent parameters of Table 2 of the main text.

- Values of pKa for most alcohols, for 2-methoxyethanol and 2-ethoxyethanol are those reported elsewhere (Lide 2005; Serjeant and Dempsey 1979). The pKa of 1-pentanol, 1-hexanol, 1-octanol, 2-cyanoethanol, 2-propyn-1-ol, 1-methoxy-2-propanol, diethyleneglycol monomethyl ether, 2-(n-propoxy)ethanol and 2-(n-butoxy)ethanol were calculated with a commercial software (Solaris, version 8.14, ACD/Labs, Toronto). To check the performance of this program, we have calculated the pKa of 10 alcohols; values calculated agreed with their literature counterparts, within ± 0.1 pKa unit.

- Values of VS were obtained by dividing the molar mass by the density at 25 oC; the latter data were taken from the literature (Lide 2005).

- Value of log PS are those reported elsewhere (Hansch et al. 1995).

- Values of dHidbrand, dD, dH and dP, are those reported elsewhere (Barton 1991).

- Solvatochromic parameters for water and values of ET(30) are literature values (Reichardt 2003). ET(30) for 2-(n-propoxy)ethanol was calculated by interpolation from a plot of ET(30) versus number of carbons atoms of ROCH2CH2OH, R = C1, C2, and C4. The uncertainties in these values are ± 0.2 kcal/mol.

- Values of aS for some alcohols were taken from the literature (Kamlet et al. 1981; Marcus 1991; Martins et al. 2006). Those for 2-chloroethanol, 2-cyanoethanol, 2-propen-1-ol, 2-propyn-1-ol, 1-methoxy-2-propanol, were experimentally determined by other members of this research group, by using 4-nitroanisol and 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (RB) (Kamlet and Taft 1976; Nicolet and Laurence 1986). The value for 1-pentanol, was interpolated from a plot of aS versus the number of carbon atoms in ROH, R = C1 to C4, C6 and C8. The uncertainties in these values are ± 0.03 unit.

- Literature values bS, were employed (Kamlet et al. 1981; Marcus 1991). Those for 2-chloroethanol, 2-cyanoethanol, 2-propen-1-ol, 2-propyn-1-ol, 1-methoxy-2-propanol, were experimentally determined as given for aS, by using 4-nitroaniline and 4-nitro-N,N-diethylaniline (Kamlet and Taft 1976; Nicolet and Laurence 1986). The value for 1-pentanol, was interpolated, as explained for aS. The uncertainties in these values are ± 0.03 unit.

- Literature values of p*S were employed (Kamlet et al. 1983; Marcus 1991; Martins et al. 2006). Those for 2-chloroethanol, 2-cyanoethanol, 2-propen-1-ol, 2-propyn-1-ol, 1-methoxy-2-propanol, were experimentally determined as given for aS, by using 4-nitroanisol (Kamlet et al. 1979). Values for 1-pentanol were interpolated, as explained for aS. The uncertainties in these values are ± 0.03 unit.

Table ESM-1 Descriptors for quantifying the swelling of cellulose.a

Solvent / ANb / DNb / dHc / dPc
Water / 54.8 / 18 / 42.3 / 16
Methanol / 41.3 / 30 / 22.3 / 12.3
Ethanol / 37.1 / 32 / 19.4 / 8.8
1-Propanol / 37.3 / 17.4 / 6.8
1-Butanol / 36.8 / 29 / 15.8 / 5.7
1-Pentanol / 31.3 / 25 / 13.9 / 4.5
1-Hexanol / 31.1
1-Octanol / 29.6 / 32 / 11.9 / 3.3
2-Propanol / 33.5 / 36 / 16.4 / 6.1
2-Methyl-2-propanol / 27.1 / 38
2-Chloroethanol / 42.3
2-Cyanoethanol / 50.7 / 17.6 / 18.8
2-Propen-1-ol / 36.5
2-Propyn-1-ol / 43.5
1-Methoxy-2-propanol / 30.4
Diethyleneglycol monomethyl ether / 34.1 / 12.7 / 7.8
2-Methoxyethanol / 37.2
2-Ethoxyethanol / 35.0
2-(n-Propoxy)ethanol / 34.2
2-(n-Butoxy)ethanol / 33.0

a- The definitions of the descriptors employed are given in Abbreviations and Symbols of the text.

b- AN and DN were taken from literature (Marcus 1997); thirteen AN values were calculated from the linear correlation between AN and ET(30) (Marcus 1993).

c- The values of these parameters are those reported elsewhere (Barton 1991).

Table ESM-2 All possible correlations between nSw and three solvent parameters.a

Cellulose / Parameters
employed / Regression Equation / r2 / SQ2
MC / pKa, ET(30), Vs / nSw = 3.6333 (± 3.4725) – 0.1870 (± 0.0926) pKa + 0.0078 (± 0.0382) ET(30) – 0.0057 (± 0.0028) Vs
bStatistical (pKa) = - 0.6068 (±0.3006); bStatistical (ET(30)) = 0.0714 (± 0.3494); bStatistical (Vs) = - 0.4176 (± 0.2068) / 0.7141 / 0.7054
pKa, log PS, ET(30) / nSw = 3.6333 (± 3.4725) - 0.1870 (± 0.0926) pKa + 0.0078 (± 0.0382) log PS - 0.0057 (± 0.0028) ET(30)
bStatistical (pKa) = - 0.6068 (± 0.3006); bStatistical (log PS) = 0.0714 (± 0.3494); bStatistical (ET(30)) = - 0.4176 (± 0.2068) / 0.7086 / 0.7191
pKa, bs, Vs / nSw = 3.6332 (± 3.4725) - 0.1870 (± 0.0926) pKa + 0.0078 (± 0.0382) bs - 0.0057 (± 0.0028) Vs
bStatistical (pKa) = - 0.6068 (± 0.3006); bStatistical (bs) = 0.0714 (± 0.3494); bStatistical (Vs) = - 0.4176 (± 0.2068) / 0.7806 / 0.5414
αs, bs, Vs / nSw = 2.5435 (± 0.5737) – 1.0571 (± 0.5873) as - 1.2428 (± 0.2776) bs - 0.0035 (± 0.0024) Vs
bStatistical (αs) =- 0.2851 (± 0.1584); bStatistical (bs) = - 0.7515 (± 0.1679); bStatistical (Vs) =- 0.2584 (± 0.1778) / 0.7205 / 0.6897
pKa, log PS, ps* / nSw = - 0.1907 (± 0.9817) - 0.0277 (± 0.0490) pKa - 0.0251 (± 0.0490) log PS + 2.0327 (± 0.4717) ps*
bStatistical (pKa) = -0.0900 (± 0.1591); bStatistical (log PS) = -0.0702 (± 0.1369); bStatistical (ps*) = 0.8042 (± 0.1866) / 0.8441 / 0.3846
αs, log PS, ps* / nSw = - 0.6276 (± 0.3429) - 0.1575 (± 0.3981) as - 0.0204 (± 0.0492) log PS + 2.2361 (± 0.3502) ps*
bStatistical (αs) = - 0.0425 (± 0.1073); bStatistical (log PS) = - 0.0570 (± 0.1375); bStatistical (ps*) = 0.8846 (± 0.1385) / 0.8423 / 0.3891
pKa, bs, log PS / nSw = 2.6730 (± 0.6768) - 0.0969 (± 0.0481) pKa - 0.8235 (± 0.2610) bs - 0.0952 (± 0.0502) log PS
bStatistical (pKa) = - 0.3143 (± 0.1559); bStatistical (bs) = - 0.4980 (± 0.1579); bStatistical (log PS) = - 0.2660 (± 0.1404) / 0.7880 / 0.5231
αs, bs,
log PS / nSw = 1.8621 (± 0.4851) - 0.6008 (± 0.5285) as - 1.1881 (± 0.2624) bs - 0.1077 (± 0.0539) log PS
bStatistical (αs) = - 0.1620 (± 0.1425); bStatistical (bs) = - 0.7184 (± 0.1587); bStatistical (log PS) = - 0.3009 (± 0.1507) / 0.7496 / 0.6178
pKa, Vs, ps* / nSw = 0.3194 (± 1.2485) – 0.0461 (± 0.0553) pKa – 0.0015 (± 0.0019) Vs + 1.8820 (± 0.5354) ps*
bStatistical (pKa) = -0.1495 (± 0.1795); bStatistical (Vs) = – 0.1100 (± 0.1425); bStatistical (ps*) = 0.7445 (± 0.2118) / 0.8477 / 0.3758
as, Vs, ps* / nSw = - 0.3788 (± 0.5375) - 0.3095 (± 0.4398) as - 0.0013 (± 0.0019) Vs + 2.2077 (± 0.3199) ps*
bStatistical (as) = - 0.0835 (± 0.1186); bStatistical (Vs) = - 0.0964 (± 0.1401); bStatistical (ps*) = 0.8734 (± 0.1266) / 0.8456 / 0.3810
Cotton / pKa, ET(30), Vs / nSw = 1.3381 (± 2.1939) - 0.0802 (± 0.0585) pKa + 0.0093 (± 0.0241) ET(30) – 0.0028 (± 0.0018) Vs
bStatistical (pKa) = - 0.4761 (± 0.3474); bStatistical (ET(30)) = 0.1551 (± 0.4038); bStatistical (Vs) = - 0.3755 (± 0.2391) / 0.6182 / 0.2815
pKa, log PS, ET(30) / nSw = - 0.9138 (± 1.5122) - 0.0195 (± 0.0472) pKa – 0.0599 (± 0.0362) log PS + 0.0301 (± 0.0171) ET(30)
bStatistical (pka) = -0.1155 (± 0.2801); bStatistical (log PS) = - 0.3060 (± 0.1850); bStatistical (ET(30)) = 0.5027 (± 0.2865) / 0.6242 / 0.2770
pKa, bs, Vs / nSw = 1.6646 (± 0.4556) - 0.0596 (± 0.0314) pKa - 0.4096 (± 0.1978) bs - 0.0017 (± 0.0013) Vs
bStatistical (pKa) = - 0.3536 (± 0.1867); bStatistical (bs) = - 0.4531 (± 0.2188); bStatistical (Vs) = - 0.2306 (± 0.1784) / 0.7046 / 0.2178
αs, bs, Vs / nSw = 1.3104 (± 0.3342) - 0.5267 (± 0.3421) as - 0.6672 (± 0.1617) bs - 0.0018 (± 0.0014) Vs
bStatistical (αs) = - 0.2599 (± 0.1688); bStatistical (bs) = - 0.7381 (± 0.1789); bStatistical (Vs) = - 0.2392 (± 0.1895) / 0.6826 / 0.2340
pKa, log PS, ps* / nSw = - 0.2354 (± 0.7002) - 0.0066 (± 0.0350) pKa - 0.0151 (± 0.0349) log PS + 1.0734 (± 0.3364) ps*
bStatistical (pKa) = - 0.0390 (± 0.2075); bStatistical (log PS) = - 0.0773 (± 0.1786); bStatistical (ps*) = 0.7768 (± 0.2435) / 0.7346 / 0.1957
αs, log PS, ps* / nSw = - 0.3351 (± 0.2433) - 0.0432 (± 0.2824) as - 0.0139 (± 0.0349) log PS + 1.1224 (± 0.2484) ps*
bStatistical (αs) = - 0.0213 (± 0.1393); bStatistical (log PS) = - 0.0713 (± 0.1785); bStatistical (ps*) = 0.8123 (± 0.1798) / 0.7344 / 0.1958
pKa, bs, log PS / nSw = 1.2367 (± 0.4264) - 0.0383 (± 0.0303) pKa - 0.4875 (± 0.1645) bs - 0.0494 (± 0.0316) log PS
bStatistical (pKa) = - 0.2272 (± 0.1797); bStatistical (bs) = - 0.5394 (± 0.1819); bStatistical (log PS) = - 0.2527 (± 0.1618) / 0.7184 / 0.2076
αs, bs,
log PS / nSw = 0.9681 (± 0.2877) - 0.2974 (± 0.3134) as - 0.6419 (± 0.1556) bs - 0.0534 (± 0.0320) log p
bStatistical (αs) = - 0.1467 (± 0.1546); bStatistical (bs) = - 0.7101 (± 0.1722); bStatistical (log PS) = - 0.2731 (± 0.1635) / 0.7052 / 0.2173
pKa, Vs, ps* / nSw = 0.0572 (± 0.8945) - 0.0171 (± 0.0396) pKa - 0.0009 (± 0.0014) Vs + 0.9890 (± 0.3836) ps*
bStatistical (pKa) = - 0.1017 (± 0.2353); bStatistical (Vs) = - 0.1166 (± 0.1867); bStatistical (ps*) = 0.7158 (± 0.2776) / 0.7383 / 0.1929
as, Vs, ps* / nSw = - 0.1752 (± 0.3822) – 0.1424 (± 0.3128) as - 0.0009 (± 0.0014) Vs + 1.1071 (± 0.2275) ps*
bStatistical (as) = - 0.0702 (± 0.1543); bStatistical (Vs) = - 0.1114 (± 0.1823); bStatistical (ps*) = 0.8012 (± 0.1646) / 0.7387 / 0.1926
M-Cotton / pKa, ET(30), Vs / nSw = 5.0815 (± 3.3001) - 0.1694 (± 0.0880) pKa + 0.0095 (± 0.0363) ET(30) – 0.0159 (± 0.0027) Vs
bStatistical (pKa) = - 0.3652 (± 0.1898); bStatistical (ET(30)) = 0.0580 (± 0.2207); bStatistical (Vs) = - 0.7718 (± 0.1306) / 0.8860 / 0.6371
pKa, log PS, ET(30) / nSw = - 8.0634 (± 3.3770) + 0.1626 (± 0.1054) pKa - 0.2364 (± 0.0808) log PS + 0.1381 (± 0.0383) ET(30)
bStatistical (pKa) = 0.3507 (± 0.2272); bStatistical (log PS) = - 0.4389 (± 0.1501); bStatistical (ET(30)) = 0.8392 (± 0.2324) / 0.7527 / 1.3816
pKa, bs, Vs / nSw = 5.2240 (± 0.6946) - 0.1325 (± 0.0479) pKa - 0.5807 (± 0.3016) bs - 0.0142 (± 0.0020) Vs
bStatistical (pKa) = - 0.2856 (± 0.1034); bStatistical (bs) = - 0.2334 (± 0.1212); bStatistical (Vs) = - 0.6878 (± 0.0988) / 0.9094 / 0.5061
αs, bs, Vs / nSw = 4.1128 (± 0.5725) - 0.8173 (± 0.5861) as - 1.1366 (± 0.2770) bs - 0.0139 (± 0.0024) Vs
bStatistical (αs) = - 0.1465 (± 0.1050); bStatistical (bs) = - 0.4568 (± 0.1113); bStatistical (Vs) = - 0.6703 (± 0.1179) / 0.8771 / 0.6867
pKa, log PS, ps* / nSw = - 1.0331 (± 2.1229) + 0.0599 (± 0.1060) pKa - 0.1564 (± 0.1060) log PS + 2.6530 (± 1.0200) ps*
bStatistical (pKa) = 0.1291 (± 0.2286); bStatistical (log PS) = - 0.2904 (± 0.1967); bStatistical (ps*) = 0.6975 (± 0.2682) / 0.6781 / 1.7987
αs, log PS, ps* / nSw = - 0.6999 (± 0.6872) + 1.2559 (± 0.7979) as - 0.1769 (± 0.0986) log PS + 2.0921 (± 0.7019) ps*
bStatistical (αs) = 0.2251 (± 0.1430); bStatistical (log PS) = - 0.3285 (± 0.1832); bStatistical (ps*) = 0.5500 (± 0.1845) / 0.7203 / 1.5631
pKa, bs, log PS / nSw = 2.4072 (± 1.1424) + 0.0054 (± 0.0811) pKa - 1.4657 (± 0.4406) bs - 0.2279 (± 0.0848) log PS
bStatistical (pKa) = 0.0116 (± 0.1749); bStatistical (bs) = - 0.5890 (± 0.1771); bStatistical (log PS) = - 0.4232 (± 0.1574) / 0.7333 / 1.4900
αs, bs,
log PS / nSw = 1.8900 (± 0.7344) + 0.6866 (± 0.8001) as - 1.3332 (± 0.3973) bs - 0.2375 (± 0.0817) log PS
bStatistical (αs) = 0.1231 (± 0.1434); bStatistical (bs) = - 0.5358 (± 0.1597); bStatistical (log PS) = - 0.4411 (± 0.1516) / 0.7466 / 1.4160
pKa, Vs, ps* / nSw = 4.3167 (± 1.5595) – 0.1262 (± 0.0691) pKa – 0.0146 (± 0.0024) Vs + 0.7583 (± 0.6688) ps*
bStatistical (pKa) = - 0.2722 (± 0.1490); bStatistical (Vs) = - 0.7059 (± 0.1183); bStatistical (ps*) = 0.1994 (± 0.1758) / 0.8951 / 0.5864
as, Vs, ps* / nSw = 1.7527 (± 0.7392) – 0.1974 (± 0.6049) as - 0.0128 (± 0.0026) Vs + 1.7257 (± 0.4400) ps*
bStatistical (as) = - 0.0354 (± 0.1084); bStatistical (Vs) = - 0.6188 (± 0.1281); bStatistical (ps*) = 0.4537 (± 0.1157) / 0.8710 / 0.7207
Eucalyptus / pKa, ET(30),Vs / nSw = 0.3431 (± 2.4075) – 0.0695 (± 0.0642) pKa + 0.0279 (± 0.0265) ET(30) – 0.0031 (± 0.0020) Vs
bStatistical (pKa) = - 0.3280 (± 0.3030); bStatistical (ET(30)) = 0.3707 (± 0.3523); bStatistical (Vs) = - 0.3328 (± 0.2085) / 0.7094 / 0.3390
pKa, log PS, ET(30) / nSw = - 2.1719 (± 1.6647) - 0.0019 (± 0.0519) pKa – 0.0656 (± 0.0398) log PS + 0.0512 (± 0.0189) ET(30)
bStatistical (pKa) = - 0.0091 (± 0.2451); bStatistical (log PS) = - 0.2665 (± 0.1619); bStatistical (ET(30)) = 0.6803 (± 0.2507) / 0.7123 / 0.3357
pKa, bs,Vs / nSw = 2.0700 (± 0.4511) - 0.0678 (± 0.0311) pKa - 0.6191 (± 0.1959) bs - 0.0022 (± 0.0013) Vs
bStatistical (pKa) = - 0.3199 (± 0.1469); bStatistical (bs) = - 0.5444 (± 0.1722); bStatistical (Vs) = - 0.2369 (± 0.1404) / 0.8170 / 0.2135
αs, bs, Vs / nSw = 1.6294 (± 0.3393) - 0.5585 (± 0.3474) as - 0.9103 (± 0.16412) bs - 0.0022 (± 0.0014) Vs
bStatistical (αs) = - 0.2190 (± 0.1362); bStatistical (bs) = - 0.8005 (± 0.1444); bStatistical (Vs) = - 0.2385 (± 0.1529) / 0.7932 / 0.2412
pKa, log PS, ps* / nSw = - 0.6083 (± 0.7086) + 0.0031 (± 0.0354) pKa - 0.0025 (± 0.0025) log PS + 1.5891 (± 0.3405) ps*
bStatistical (pKa) = 0.0145 (±0.1670); bStatistical (log PS) = - 0.0104 (± 0.1437); bStatistical (ps*) = 0.9142 (± 0.1959) / 0.8282 / 0.2004
αs, log PS, ps* / nSw = - 0.5972 (± 0.2456) + 0.0736 (± 0.2851) as - 0.0037 (± 0.0352) log PS + 1.5591 (± 0.2508) ps*
bStatistical (αs) = 0.0289 (± 0.1118); bStatistical (log PS) = - 0.0151 (± 0.1432); bStatistical (ps*) = 0.8970 (± 0.1443) / 0.8289 / 0.1996