Mr. BoroskyAlgebra 2 Review # 3 Chapters 4 & 5 Name: ______
- Use the Rules for Exponents to solve the following.
- USE ONLY POSITIVE EXPONENTS.
- Make sure you simplify the numerical part (ex. 23 = 8)
- (5b)4(b)
- (r6s5)3
- (x2a + 3)(x4a - 7)
- 4-3
- _a11_
- _(-3)7_
- ( 2 )3
- ( 4x3y3 ) * ( 5xy2 )
- Write in Decimal Notation
- Write in Scientific Notation
Perform the Indicated Operation and Write the Result in BOTH
1. Decimal Notation and 2. Scientific Notation.
- (4 * 106)(6 * 10-2)
- _4.2 * 108_
Add or Subtract the Following Polynomials.
- 6x3 – 5x2 - 3
- (8a2 + 5a + 2) – (8a2 + 5a + 2)
Multiply the Polynomials.
- (3x - 1)(4x – 7)
- (3m – 2x)2
- 3a(a3 – 2a2) – 5(2a4 - 3a2)
- (5x2 – 6x + 9)(4x2 + 3x + 11)
- Factor x2 – 144
B. (x + 12)(x + 12)
C. (x + 12)(x – 12)
D. Prime /
- Factor x3 - 8
B. (x - 2)(x2 + 2x + 4)
C. (x + 2)(x2 + 2x + 4)
D. (x - 2)(x2 - 2x + 4)
- Factor 25x8 – 49y6
- Factor 5x2 – 20
- Factor x4 – 14x2 - 15
- Factor 9x2 + 18x + 9
- Factor 5x2 + 7x - 6
- Factor x3 + 64
- Factor 5x3 – 15x2 = 0
- Factor y = x2 + 7x - 30
Find The Vertex and label it as a Max or Min and Graph Each Function. Use Graph Paper. Use a Minimum of 5 Points.
- y = - ½x2 + 4x
|
|
|
|
| /
- y = 2(x + 2)2
|
|
|
|
|
Simplify the Radical Expressions.
- _ __
- ___
√ 25
- __ _
Solve the following.
- 2(x – 4)2 = 32
B) 0
C) 0, 8
D) –8, 0