Name______Period______Date______
Unit 10 – Review
Can the triangles be proved congruent? If so, name the postulate or theorem that would prove the triangles congruent. If not, write NONE. Mark vertical angles or shared sides as necessary.
______1. 1. 2. 3.
______2.
______3.
______4. 4. 5. 6.
______5.
______6.
______7. 7. 8. 9.
______8.
______9.
______10. 10. 11. 12.
______11.
______12.
______13. 13. 14. 15. 16.
______14.
______15.
______16.
What additional congruence statement is needed to prove the triangles congruent by the indicated postulate or theorem?
#17 – 20. Given: ∆NLY and ∆MPA
______17. , by SAS
______18. , by SSS
______19. , by AAS
______20. , by ASA
#21 – 23. Given: ∆ABC and ∆DEF
______21. , by ASA
______22. , by AAS
______23. , by SAS
#24 – 26. Given: ∆QPR and ∆SPR
______24. , by SAS
______25. , by AAS
______26. , by ASA
Complete each statement using ∆ABC.
______27. _?_ is the included side of and .
______28. The right angle is _?_.
______29. The hypotenuse is _?_.
______30. The side opposite is _?_.
______31. and _?_ are legs of the right triangle.
______32. The angle opposite is _?_.
______33. _?_ is the included angle of sides and .
______34. The vertex angle is _?_.
______35. The legs are _?_ and _?_.
______
______36. The base is _?_.
______37. If you use perpendicular segments as a statement in a proof, in the next
statement you should name the _?_ angles formed.
______38. After two triangles are proven congruent, the definition that allows you to state the remaining parts congruent is _?_.
Informal Proofs.
39. Given: ,
a) Mark the triangles with the given information.
b) What other corresponding parts are congruent?
c) Why are the triangles congruent?
40. Given: P is the midpoint of .
a) Mark the triangles with the given information.
b) What other corresponding parts are congruent?
c) Why are the triangles congruent?
d) Explain why.
41. Given: , F is the midpoint of .
a) Mark the triangles with the given information.
b) What other corresponding parts are congruent?
c) Why are the triangles congruent?
d) Explain why.
Circle the correct answer choice.
42. Which of these will not be used as a reason in a proof of ?
A) ASA C) SAS
B) CPCTC D) Reflexive Property
Formal Proofs
43. Given: , , C is the midpoint of .
Prove: ∆ABC∆FEC
44. Given: , C is the midpoint of .
Prove: ∆ACB∆ECD
45. Given: ,
Prove: ∆ABD∆CBD
46. Given: bisects
bisects
Prove:
Unit 10 Review Page 4
47. Given: ,
Prove:
48. Given: ,
Prove:
Unit 10 Review Page 4
Review Answer Key
Unit 10 Review Page 4
1. ASA
2. HL
3. AAS
4. AAS
5. SSS
6. SAS
7. SAS
8. AAS
9. SAS
10. ASA
11. NONE
12. NONE
13. SAS
14. SAS
15. ASA
16. SSS
17.
18.
19. ÐY @ ÐA
20.
21. ÐC @ ÐF
22. ÐA @ ÐD
23. ÐC @ ÐF
24.
25. ÐQ @ ÐS
26.
27.
28. ÐB
29.
30.
31.
32. ÐB
33. ÐC
34. OMIT
35.
36. OMIT
37. right
38. CPCTC (Congruent Parts of Congruent Triangles are Congruent)
39. (b) Ð1 @ Ð2
(c) SAS
40. (b) , Ð1 @ Ð2
(c) ASA
(d) CPCTC
41. (b) Ð1 @ Ð2,
(c) SAS
(d) CPCTC
42. A
43.
Statements / Reasons1. Ð1 @ Ð2, Ð3 @ Ð4, C is the midpoint of / 1. Given
2. / 2. Def. of midpoint
3. ΔABC @ ΔFEC / 3. AAS
44.
Statements / Reasons1. ÐA @ ÐE, C is the midpoint of / 1. Given
2. / 2. Def. of midpoint
3. Ð1 @ Ð2 / 3. Vertical angles
4. ΔACB @ ΔECD / 3. AAS
45.
Statements / Reasons1. Ð1 @ Ð2, Ð3 @ Ð4 / 1. Given
2. / 2. Reflexive property
3. ΔABD @ ΔCBD / 3. ASA
46.
Statements / Reasons1. bisects ÐABD,
bisects ÐACD / 1. Given
2. Ð1 @ Ð2, Ð3 @ Ð4 / 2. Def. of angle bisector
3. / 3, Reflexive property
4. ΔABC @ ΔDBC / 4. ASA
5. / 5. CPCTC
47.
Statements / Reasons1. / 1. Given
2. ÐKRS @ ÐTSR, ÐKSR @ ÐTRS / 2. Alternate interior angles
3. / 3, Reflexive property
4. ΔSKR @ ΔRTS / 4. ASA
5. / 5. CPCTC
48.
Statements / Reasons1. , ÐSAT @ ÐRAT / 1. Given
2. / 2. Radii are congruent
3. / 3, Reflexive property
4. ΔSAT @ ΔRAT / 4. SAS
5. / 5. CPCTC
Unit 10 Review Page 4