Graphing Quadratic Functions Group TestREVIEW
Directions: Each person will work at least 3 problems on this test. You will put your name by the problem you worked out. You group members will check your work and initial it.
Graph: Choose 3 problems from this section.
1.Graph y = x2 +4
2.Graph the quadratic function. Label the vertex and axis of symmetry.
y = x2 – 3x + 4
3.Graph y = -(x – 3)2 + 1
4.Graph the parabola:y = (x + 4)2 -2
5.Sketch the graph of the equation. y = x2 – 3x + 2
6.Sketch the graph of the equation. y = x2 + 4x – 4
7.Graph the function. Label the vertex, axis of symmetry, and x-intercepts.
y = - x2 + 4x - 2
Writing: Choose 2 problems from this section.
8.Find the vertex and the axis of symmetry of the parabola. y = x2 +2x + 1
x = -b/2a x =-2/2(1) = -1 axis of symmetry y = (-1)2 +2(-1) + 1 =0 vertex is (-1,0)
9.Find the vertex of the parabola and determine if it opens up or down. y = 3x2 – 6x + 4
x = -b/2a x =-(-6)/2(3) = 1 y = 3(1)2 -6(1) + 4=1 vertex(1,1) opens up
10.Define quadratic function. Give an example of a quadratic function.
A quadratic function is a function of the form where The function is a quadratic function.
11.How would you translate the graph of to produce the graph of y = x2 - 8?
You would move it down the y-axis 8 units
Min or Max:Find the maximum value or minimum value for the function. Choose One.
12.y = -4x2 + 8x + 2
Max point at (1,6)
13.f(x) = -x2 – 2x – 1
Max point at (-1, 0)
Finding c:Choose One, either a or b.
14.The graph of the equationy = ax2 -12x + c hasa vertex of (-2, 13).
a. Explain how to use the formula for the x-coordinate of the vertex to find the value of a.
a. The value of the x-coordinate of the vertex is . In y = ax2 -12x + c ,b = –12, so solve -2 = -12/2a for a: a = -3.
b. Use the values of x and y from the vertex in the equation to find the value of c, then write the equation.
b. We now have y = -3x2 – 12x +c . Substituting -2 for x and 13 for y gives 13 = -3(-2)2-12(-2) + c . Solving for c yields c = 1. The equation is y = -3x2 – 12x + 1 .
Transformations:Choose 2 problems from this section.Either 15 and 17 or 16 and 18.
15.How would you translate the graph of to produce the graph of y = (x + 7)2
You would move it left on the x-axis 7 units
16.How would you translate the graph of to produce the graph of y = x2 +5 ?
You would move it down the y-axis 5 units
In 17 & 18 Tell how to translate the graph of in order to produce the graph of the function.
17.y = 0.2(x +4)2 - 3
Move it 4 units left and 3 units down
18.
Move it 4 units right and 1 unit up
Writing:Choose 2 problems from this section.
19.Write three equations that show different ways in which the graph of the equation can be translated. At least one of the equations must describe a translation of the graph in two directions.
Sample answers:
20.Write three equations that show different ways in which the graph of can be translated. At least one of the equations must describe a translation of the graph in two directions.
Sample answers:
21.Writing: Explain how to obtain the graph of y = (x – 3)2 + 2from the graph of .
Then describe the graph of y = (x – 3)2 + 2.
Sample answer: The graph of y = (x – 3)2 + 2 can be obtained by translating the graph of down 2 units and then 3 units to the right. The graph is a parabola with vertex (3, 2) that opens upward and is congruent to the graph of .
22.Writing: Explain how to obtain the graph of y = (x+ 5)2 – 3 from the graph of .
Then describe the graph of y = (x+ 5)2 – 3 .
Sample answer:The graph of y = (x+ 5)2 – 3 can be obtained by translating the graph of down 3 units and then 5 units to the left. The graph is a parabola with vertex (-5, -3) that opens upward and is congruent to the graph of .
Problem #: ____ Name ______
Initials : ______Show answer and/or work below:
Problem #: ____ Name ______
Initials : ______Show answer and/or work below:
Open-ended:Choose 23 and 24OR you can just do 25from this section.
23.Open-ended: Find a quadratic function that has a maximum value of 4 and x = 2 as the line of symmetry for its graph.
Any equation of the form y = -a(x -2)2 +4 where a 0; sample: y = -3(x -2)2 +4 .
24.Open-ended: Find a quadratic function that has a minimum value of 2 and x = -1 as the line of symmetry for its graph.
Any equation of the form y = a(x +1)2 +2 where a 0; sample: y = 2(x +1)2 +2 .
25.Open-ended Problem: Write a quadratic equation, if possible, for a parabola that has the following intercepts. (Counts as 2 questions)
a. onex-intercept b. two x-intercepts
c. threex-intercepts d. no x-intercepts
e. oney-intercept f. two y-intercepts
Answers will vary. Examples are given.
a. b. c. not possible d. e. f.
Vertex & A Point:Choose both problems from this section.
26.Write a quadratic function in vertex form that has the given vertex and passes through the given point.
Vertex: (-4, 1); Point: (-2, 5) y = (x + 4)2 + 1
27.Write a quadratic function in vertex form that has the given vertex and passes through the given point.
Vertex: (1,6); Point: (-1,2)y = -(x- 1)2 + 6
Finding Equations:Every group must complete this question. It counts as 5 questions.
28.Find the equation for the parabola that has one x-intercept (6, 0), axis of symmetry x = 2, and maximum value 6. Explain how you got your answer:
Answer: ______y = -3/8(x-2)2 + 6______
Explanation: ______Because the axis of symmetry is x =2 and the max is 6, the vertex is (2,6) Substitute this (x,y) value into the vertex form of a quadratic equation y = a(x – h )______
______
______
______
______
______
.
Graphing Quadratic Functions Test
Answer Section
1.ANS:
PTS:1DIF:Level BREF:MAL20515NAT:NT.CCSS.MTH.10.9-12.F-IF.7.a
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.8.C | TX.TAKS.MTH.07.10.5.A.10.A | TX.TAKS.MTH.07.11.5.A.10.A TOP: Lesson 4.1 Graph Quadratic Functions in Standard Form
KEY:graph | quadraticMSC:KnowledgeNOT:978-0-547-31541-6
2.ANS:
Move the graph of up 10units to get the graph of .
PTS:1DIF:Level BREF:MAL20520STA:TX.TEKS.MTH.05.AL2.6.B
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.e
TOP:Lesson 4.1 Graph Quadratic Functions in Standard FormKEY:translation | parabola
MSC:AnalysisNOT:978-0-547-31541-6
3.ANS:
axis of symmetry: x =
vertex: (, )
PTS:1DIF:Level BREF:MAL20521NAT:NT.CCSS.MTH.10.9-12.F-IF.7.a
STA:TX.TEKS.MTH.05.AL2.5.C | TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.8.C | TX.TAKS.MTH.07.10.5.A.10.A | TX.TAKS.MTH.07.11.5.A.10.A
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.1 Graph Quadratic Functions in Standard Form
KEY:graph | parabola | vertex | axis of symmetry | quadraticMSC:Knowledge
NOT:978-0-547-31541-6
4.ANS:
Vertex: (2, 4); Axis: x = 2
PTS:1DIF:Level BREF:MAL20523STA:TX.TEKS.MTH.05.AL2.5.C
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.1 Graph Quadratic Functions in Standard FormKEY:parabola | vertex | axis of symmetry
MSC:KnowledgeNOT:978-0-547-31541-6
5.ANS:
Vertex: (-2, 15); Opens down
PTS:1DIF:Level BREF:MAL20524STA:TX.TEKS.MTH.05.AL2.5.C
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.1 Graph Quadratic Functions in Standard FormKEY:parabola | vertex | down | up
MSC:KnowledgeNOT:978-0-547-31541-6
6.ANS:
PTS:1DIF:Level BREF:MAL20526NAT:NT.CCSS.MTH.10.9-12.F-IF.7.a
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.8.C | TX.TAKS.MTH.07.10.5.A.10.A | TX.TAKS.MTH.07.11.5.A.10.A TOP: Lesson 4.1 Graph Quadratic Functions in Standard Form
KEY:graph | parabolaMSC:KnowledgeNOT:978-0-547-31541-6
7.ANS:
PTS:1DIF:Level BREF:MAL20527NAT:NT.CCSS.MTH.10.9-12.F-IF.7.a
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.8.C | TX.TAKS.MTH.07.10.5.A.10.A | TX.TAKS.MTH.07.11.5.A.10.A TOP: Lesson 4.1 Graph Quadratic Functions in Standard Form
KEY:graph | parabolaMSC:KnowledgeNOT:978-0-547-31541-6
8.ANS:
vertex: ; axis of symmetry:
PTS:1DIF:Level BREF:MAL20529NAT:NT.CCSS.MTH.10.9-12.F-IF.7.a
STA:TX.TEKS.MTH.05.AL2.5.C | TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.8.C | TX.TAKS.MTH.07.9.5.A.9.C | TX.TAKS.MTH.07.10.5.A.9.C | TX.TAKS.MTH.07.10.5.A.10.A | TX.TAKS.MTH.07.11.5.A.9.C | TX.TAKS.MTH.07.11.5.A.10.A
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c | NCTM.PSSM.00.MTH.9-12.ALG.1.e
TOP:Lesson 4.1 Graph Quadratic Functions in Standard FormKEY:graph | parabola | quadratic
MSC:KnowledgeNOT:978-0-547-31541-6
9.ANS:
Sample answer:A quadratic function is a function of the form where The function is a quadratic function.
PTS:1DIF:Level BREF:MAL20535
STA:TX.TEKS.MTH.05.AL2.9.G | TX.TAKS.MTH.07.9.10.8.15.A | TX.TAKS.MTH.07.10.10.8.15.A | TX.TAKS.MTH.07.11.6.G.4.A | TX.TAKS.MTH.07.11.10.8.15.A
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c | NCTM.PSSM.00.MTH.9-12.ALG.1.e | NCTM.PSSM.00.MTH.9-12.COM.4 | NCTM.PSSM.00.MTH.9-12.REP.1 | NCTM.PSSM.00.MTH.9-12.REP.3 TOP: Lesson 4.1 Graph Quadratic Functions in Standard Form
KEY:write | quadratic | functionMSC:Comprehension
NOT:978-0-547-31541-6
10.ANS:
maximum: 13
PTS:1DIF:Level BREF:MAL21426NAT:NT.CCSS.MTH.10.9-12.A-SSE.3.b
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.1 Graph Quadratic Functions in Standard FormKEY:quadratic | function | maximum
MSC:ComprehensionNOT:978-0-547-31541-6
11.ANS:
minimum: 0.75
PTS:1DIF:Level BREF:MAL21427NAT:NT.CCSS.MTH.10.9-12.A-SSE.3.b
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.1 Graph Quadratic Functions in Standard FormKEY:quadratic | function | minimum
MSC:ComprehensionNOT:978-0-547-31541-6
12.ANS:
a. The value of the x-coordinate of the vertex is . In , b = –4, so solve for a: a = 1.
b. We now have . Substituting 2 for x and 5 for ygives . Solving for c yields c = 9. The equation is .
PTS:1DIF:Level AREF:A2.04.01.SR.02
TOP:Lesson 4.1 Graph Quadratic Functions in Standard FormKEY:Quadratic | vertex | short response
MSC:AnalysisNOT:978-0-547-31541-6
13.ANS:
PTS:1DIF:Level BREF:MAL20536NAT:NT.CCSS.MTH.10.9-12.F-IF.7.a
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.8.C | TX.TAKS.MTH.07.10.5.A.10.A | TX.TAKS.MTH.07.11.5.A.10.A LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:graph | vertex formMSC:KnowledgeNOT:978-0-547-31541-6
14.ANS:
PTS:1DIF:Level BREF:MAL20538NAT:NT.CCSS.MTH.10.9-12.F-IF.7.a
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.8.C | TX.TAKS.MTH.07.10.5.A.10.A | TX.TAKS.MTH.07.11.5.A.10.A LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:graph | vertex formMSC:KnowledgeNOT:978-0-547-31541-6
15.ANS:
PTS:1DIF:Level BREF:MAL20540
STA:TX.TEKS.MTH.05.AL2.5.C | TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.7.B
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:translation | parabolaMSC:Comprehension
NOT:978-0-547-31541-6
16.ANS:
PTS:1DIF:Level BREF:MAL20542
STA:TX.TEKS.MTH.05.AL2.5.C | TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.7.B
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:translation | parabolaMSC:Comprehension
NOT:978-0-547-31541-6
17.ANS:
3 units left and 4 units down
PTS:1DIF:Level BREF:MAL20543
STA:TX.TEKS.MTH.05.AL2.5.C | TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.7.B
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:translate | graphMSC:Comprehension
NOT:978-0-547-31541-6
18.ANS:
5 units right and 1 unit up
PTS:1DIF:Level BREF:MAL20544
STA:TX.TEKS.MTH.05.AL2.5.C | TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.7.B
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:translate | graphMSC:Comprehension
NOT:978-0-547-31541-6
19.ANS:
PTS:1DIF:Level BREF:MAL20552NAT:NT.CCSS.MTH.10.9-12.F-IF.7.a
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.8.C | TX.TAKS.MTH.07.10.5.A.10.A | TX.TAKS.MTH.07.11.5.A.10.A
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:quadratic | relation | graph | parabolaMSC:Knowledge
NOT:978-0-547-31541-6
20.ANS:
Sample answers:
PTS:1DIF:Level BREF:MAL20555NAT:NT.CCSS.MTH.10.9-12.F-BF.3
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TAKS.MTH.07.9.2.A.4.A | TX.TAKS.MTH.07.9.5.A.9.C | TX.TAKS.MTH.07.10.2.A.4.A | TX.TAKS.MTH.07.10.5.A.9.B | TX.TAKS.MTH.07.10.5.A.9.C | TX.TAKS.MTH.07.11.2.A.4.A | TX.TAKS.MTH.07.11.5.A.9.B | TX.TAKS.MTH.07.11.5.A.9.C
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.e | NCTM.PSSM.00.MTH.9-12.GEO.3.a
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:square | variable | translate | equationMSC:Comprehension
NOT:978-0-547-31541-6
21.ANS:
Sample answers:
PTS:1DIF:Level BREF:MAL20556NAT:NT.CCSS.MTH.10.9-12.F-BF.3
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TAKS.MTH.07.9.2.A.4.A | TX.TAKS.MTH.07.9.5.A.9.C | TX.TAKS.MTH.07.10.2.A.4.A | TX.TAKS.MTH.07.10.5.A.9.B | TX.TAKS.MTH.07.10.5.A.9.C | TX.TAKS.MTH.07.11.2.A.4.A | TX.TAKS.MTH.07.11.5.A.9.B | TX.TAKS.MTH.07.11.5.A.9.C
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.e | NCTM.PSSM.00.MTH.9-12.GEO.3.a
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:equation | square | variable | translateMSC:Comprehension
NOT:978-0-547-31541-6
22.ANS:
Sample answer:The graph of can be obtained by translating the graph of down 3 units and then 3 units to the left. The graph is a parabola with vertex (-3, -2) that opens upward and is congruent to the graph of .
PTS:1DIF:Level BREF:MAL20559NAT:NT.CCSS.MTH.10.9-12.F-BF.3
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TAKS.MTH.07.9.2.A.4.A | TX.TAKS.MTH.07.9.5.A.9.C | TX.TAKS.MTH.07.10.2.A.4.A | TX.TAKS.MTH.07.10.5.A.9.B | TX.TAKS.MTH.07.10.5.A.9.C | TX.TAKS.MTH.07.11.2.A.4.A | TX.TAKS.MTH.07.11.5.A.9.B | TX.TAKS.MTH.07.11.5.A.9.C
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.e | NCTM.PSSM.00.MTH.9-12.GEO.3.a
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:graph | vertex form | translationMSC:Comprehension
NOT:978-0-547-31541-6
23.ANS:
Sample answer:The graph of can be obtained by translating the graph of down 3 units and then 5 units to the right. The graph is a parabola with vertex (5, -3) that opens upward and is congruent to the graph of .
PTS:1DIF:Level BREF:MAL20560NAT:NT.CCSS.MTH.10.9-12.F-BF.3
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TAKS.MTH.07.9.2.A.4.A | TX.TAKS.MTH.07.9.5.A.9.C | TX.TAKS.MTH.07.10.2.A.4.A | TX.TAKS.MTH.07.10.5.A.9.B | TX.TAKS.MTH.07.10.5.A.9.C | TX.TAKS.MTH.07.11.2.A.4.A | TX.TAKS.MTH.07.11.5.A.9.B | TX.TAKS.MTH.07.11.5.A.9.C
LOC:NCTM.PSSM.00.MTH.9-12.ALG.1.e | NCTM.PSSM.00.MTH.9-12.GEO.3.a
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:graph | vertex form | translateMSC:Comprehension
NOT:978-0-547-31541-6
24.ANS:
Any equation of the form where a 0; sample: .
PTS:1DIF:Level BREF:MAL20561
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.6.C
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:quadratic | function | maximum | axis of symmetryMSC:Comprehension
NOT:978-0-547-31541-6
25.ANS:
Any equation of the form where a 0; sample: .
PTS:1DIF:Level BREF:MAL20562
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.6.C
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:quadratic | function | axis of symmetry |minimumMSC:Comprehension
NOT:978-0-547-31541-6
26.ANS:
Answers will vary. Examples are given.
a. b. c. not possible d. e. f.
PTS:1DIF:Level BREF:MAL20563
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.6.C
TOP:Lesson 4.2 Graph Quadratic Functions in Vertex or Intercept Form
KEY:quadratic | equation | x-interceptsMSC:Comprehension
NOT:978-0-547-31541-6
27.ANS:
PTS:1DIF:Level BREF:MAL20718
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.6.C
TOP:Lesson 4.10 Write Quadratic Functions and Models
KEY:equation | function | vertex form | parabola | vertexMSC:Knowledge
NOT:978-0-547-31541-6
28.ANS:
f(x)=x2
PTS:1DIF:Level AREF:MAL20719
STA:TX.TEKS.MTH.05.AL2.6.B | TX.TEKS.MTH.05.AL2.6.C
TOP:Lesson 4.10 Write Quadratic Functions and Models
KEY:parabola | vertex | equation | functionMSC:Knowledge
NOT:978-0-547-31541-6
29.ANS:
PTS:1DIF:Level BREF:A2.04.10.FR.29
TOP:Lesson 4.10 Write Quadratic Functions and Models
KEY:Free Response | write quadratic function | standard formMSC:Knowledge
NOT:978-0-547-31541-6
30.ANS:
The maximum value is 8, so the y-coordinate of the vertex is 8. The axis of symmetry is and since the axis of symmetry runs through the vertex, the x-coordinate of the vertex is 4. So the vertex is (4, 8). The vertex form of the equation is . Then substitute the values from (8, 0) into the equation to get . Solving for ayields . The final equation is .
PTS:1DIF:Level BREF:A2.04.10.SR.24
TOP:Lesson 4.10 Write Quadratic Functions and Models
KEY:Vertex | axis of symmetry | short responseMSC:Comprehension
NOT:978-0-547-31541-6