The Noise Diode

A special kind of diode should be mentioned here, because experiments with it are quite interesting. It is the noise diode, intended for the specific purpose of producing wide-band RF noise through the shot effect. Shot effect noise is fluctuations in the anode current due to the random collection of electrons. We have already mentioned that the anode current is controlled by the space charge around the filament. It was discovered, to some surprise, that this correlated successive electrons so that they were emitted regularly to maintain a constant current, and therefore the shot effect was nearly completely eliminated. That is, a normal diode has no shot effect noise in its plate current.

The noise diode is designed so that at reasonable plate voltages, all electrons emitted by the filament are immediately drawn to the plate without forming much of a space charge. Since the electrons are emitted randomly, the anode current will show the full shot effect noise. This is done by purposely making the filament to have low emission. To do this, a tungsten filament is used. Noise diodes give us the opportunity to observe a tungsten filament, as well as temperature saturation.

An available noise diode is the 5722, whose basing is shown at the right. The 7-pin miniature tube was made as late as 1977, and now costs about $14, which is probably not much more than when it was new. The maximum plate voltage is given as 200 V, and the maximum plate current as 35 mA, so apparently the plate can dissipate 7 W. The plate has wings that make a good dissipation probable.

A circuit for testing the 5722 is shown at the left. Note that an RF choke is put in the plate lead to act as a load for the current fluctuations. This choke should be rated for the plate current employed. I connected a variable DC supply to the filament as shown, to pins 3 and 4, leaving the center tap alone. This supply should be rated at 2 A or more. Increase the filament voltage gradually, looking for the glow. There will be no plate current until the filament current reaches about 1.3 A, but it increases very rapidly beyond this point. The filament glows brilliantly, like an incandescent lamp, since its operating temperature is about 2400K, not the 900K of an oxide-coated filament. The filament current should not be allowed to exceed 1.6 A. If the power supply has current limiting, it can be useful here. By setting the plate voltage at near 200 V, you can see the saturation current as a function of filament current.

For two or more reasonable values of the saturation current, say 5 mA, 12 mA and 20 mA, record the current as a function of plate voltage and plot your results. For If = 1.5 A, the plate current saturated for about 50 V on the plate, approaching a value of about 12 mA. It is easy to find out what plate voltage to use to ensure saturation when making shot noise in this way. It is very difficult to make noise measurements in the usual breadboarding environment. I thought it just possible to have seen some on my 100 MHz scope with a plate current of 20 mA, without amplification. See the page on Noise for more discussion of noise measurements.