MD021 - Management and Operations

Service Operations Design Using Waiting Line Models

Outline

Structure of waiting line problems

Single-server model

Multiple-server model

Finite-source, single-server model

Using waiting line models to analyze and design service operations

Structure of Waiting Line Problems

  • Customer population
  • The source of input to the service system
  • Whether the input source is finite or infinite
  • Whether the customers are patient or impatient
  • The service system
  • Number of lines - single vs. multiple lines
  • Arrangement of service facilities - channels and phases
  • Priority rule
  • First-come, first-served (FCFS) discipline
  • Other rules - e.g. earliest due date (EDD), shortest processing time (SPT)
  • Preemptive discipline

Single-Server Model

Assumptions:

Number of servers = 1

Number of phases = 1

Input source: infinite, no balking or reneging

Arrival distribution: Poisson; mean arrival rate =

Service distribution: Exponential; mean service rate = ; mean service time =

Waiting line: single line; unlimited length

Priority discipline: FCFS

Single-Server Operating Characteristics

Average utilization:

Probability that n customers are in the system:

Average number of customers in the system:

Average number of customers in line:

Average time spent in the system:

Average time spent in line:

1

Single-Server Application

Customers arrive at a checkout counter at an average of 20 per hour, according to a Poisson distribution. They are served at an average rate of 25 per hours, with exponential service times. Use the single-server model to estimate the operating characteristics of this system.

L =

W =

What service rate is required to have customers average only 10 minutes in the system?

1

Multiple-Server Model

Assumptions:

Number of servers = s

Number of phases = 1

Input source: infinite, no balking or reneging

Arrival distribution: Poisson; mean arrival rate =

Service distribution: Exponential; mean service rate = ; mean service time =

Waiting line: single line; unlimited length

Priority discipline: FCFS

1

Multiple-Server Operating Characteristics

Average utilization:

Probability that zero customers are in the system:

Probability that n customers are in the system:

Average number of customers in line:

Average time spent in line:

Average time spent in the system:

Average number of customers in the system:

Multiple-Server Application

Suppose the manager of the checkout system decides to add another counter. The arrival rate is still 20 customers per hour, but now each checkout counter will be designed to service customers at the rate of 12.5 per hour. Use the multiple-server model to estimate the operating characteristics of this system.

How do the single-server and multiple-server models compare?

1

Finite-Source, Single-Server Model

Assumptions:

Number of servers = 1

Number of phases = 1

Input source: finite, equals N customers

Arrival distribution: Exponential interarrival times; mean =

Service distribution: Exponential; mean service rate = ; mean service time =

Waiting line: single line; no more than N - 1

Priority discipline: FCFS

Finite-Source, Single-Server Operating Characteristics

Probability that zero customers are in the system:

Average utilization:

Average number of customers in line:

Average number of customers in the system:

Average time spent in line:

Average time spent in the system:

1

Finite-Source, Single-Server Application

DBT Bank has 8 copy machines located in various offices throughout the building. Each machine is used continuously and has an average time between failures of 50 hours. Once failed, it takes 4 hours for the service company to send a repair person to have it fixed. What is the average number of copy machines in repair or waiting to be repaired?

Hilltop Produce Problem

The Hilltop Produce store is staffed by one checkout clerk. The average checkout time is exponential distributed around an average of two minutes per customer. An average of 20 customers arrive per hour.

a. What is the average utilization rate?

b. What is the probability that three or more customers

will be in the checkout area?

c. What is the average number of customers in the waiting

line?

d. If the customers spend an average of 10 minutes

shopping for produce, what is the average time

customers spend in the store?

1

Using Waiting Line Models to Analyze Service Operations

Balance costs against benefits of improving service system. Also, consider the costs of not making improvements.

Line length - Long lines indicate poor customer service, inefficient service, or inadequate

capacity.

Number of customers in system - A large number causes congestion and dissatisfaction.

Waiting time in line - Long waits are associated with poor service.

Total time in system - May indicate problems with customers, server efficiency, or

capacity.

Service facility utilization - Control costs without unacceptable reduction in service.

Using Waiting Line Models to Design Service Operations

Arrival rates - Adjust through advertising, promotions, pricing, appointments.

Number of service facilities - Adjust service system capacity.

Number of phases - Consider splitting service tasks.

Number of servers per facility - Work force size.

Server efficiency - Training, incentives, work methods, capital investment.

Priority rule - Decide whether to allow preemption.

Line arrangement - Single or multiple lines.

Supplementary Material:

A. Arrival Distribution

The probability distribution of the number of arrivals (number of customers who arrive in T time periods), n, follows Poisson distribution:

for n = 0,1,2…

where P(n) = probability of n arrivals in T time periods

= average number of customer arrivals per time period

e = 2.7183

Mean Variance

Let T =1.Then, n, the number of arrivals per unit of time period follows a Poisson distribution with the following probability function:

Mean Variance

B. Service Time Distribution

The service time for a customer, t, follows exponential distribution:

where = average number of customers completing service per time period

t = service time of the customer

T = target service time

Mean Variance

1