Philosophy 145

Professor Amy Kind

Spring 2008

Homework for April 8

·  Read pp. 76-85

·  Do the Exercise on Quantifier Rules (handout)

·  Prove S87-S93. I strongly recommend that you use the Logic Daemon to do so. (http://logic.tamu.edu)

·  Do #23-46; 61; 63-66 in exercise 3.2 in the book, as indicated below

Notes for Exercise 3.2

Do the following sentences in Exercise 3.2: 23-46; 61; 63-66. Note that some of these sentences may be ambiguous, in which case you should give both readings of the sentence. Also, for this exercise, be on the lookout for the hidden predicate:

Pa: a is a person

Translation Schemes

#23–29

s: Shamu

Ta: a is a trick

Wa: a is a whale

Cab: a can do b

Note: read #29 as “If some whale can do a trick, any whale can do a trick.”

#30-42; 61; 63-66

g: Godzilla

b: Bambi

Aab: a ate b

#43-46

Sabg: a said b to g

Exercise – The Conditions on our Quantifier Rules

Some of the following proofs involve illegal applications of our quantifier rules. For each proof, indicate whether any of the moves is illegal, and for any illegal move, indicate why.

i. Fa |- $xFx

1 (1) Fa A

1 (2) $xFx 1 $I

ii. Fa |- "xFx

1 (1) Fa A

1 (2) "xFx 1 "I

iii. "xFx |- Fa

1 (1) "xFx A

1 (1) Fa 1 "E

iv. $xFx |- Fa

1 (1) $xFx A

2 (2) Fa A [for $E on 1]

1 (3) Fa 1,2 $E (2)

v. $xFx |- "xFx

1 (1) $xFx A

2 (2) Fa A [for $E on 1]

2 (3) "xFx 2 "I

1 (4) "xFx 1,3 $E (2)

vi. "xFx |- $xFx

1 (1) "xFx A

1 (2) Fa 1 "E

1 (3) $xFx 2 $I


vii. "xFx ® "xGx |- "x(Fx ® Gx)

1 (1) "xFx ® "xGx A

2 (2) Fa A [for ®I]

2 (3) "xFx 2 "I

1,2 (4) "xGx 1,3 ®E

1,2 (5) Ga 4 "E

1 (6) Fa ® Ga 5 ®I (2)

1 (7) "x(Fx ® Gx) 6 "I

viii. "x(Fx ® Gx) |- "xFx ® "xGx

1 (1) "x(Fx ® Gx) A

2 (2) "xFx A [for ®I]

2 (3) Fa 2 "E

1 (4) Fa ® Ga 1 "E

1,2 (5) Ga 3,4 ®E

1,2 (6) "xGx 5 "I

1 (7) "xFx ® "xGx 6 ®I (2)

ix. $x(Fx & Gx) |- $xFx & $xGx

1 (1) $x(Fx & Gx) A

2 (2) Fa & Ga A [for $E on 1]

2 (3) Fa 2 &E

2 (4) $xFx 3 $I

1 (5) $xFx 1,4 $E (2)

2 (6) Ga 2 &E

2 (7) $xGx 6 $I

1 (8) $xGx 1,7 $E (2)

1 (9) $xFx & $xGx 5,8 &I

x. $xFx & $xGx |- $x(Fx & Gx)

1 (1) $xFx & $xGx A

1 (2) $xFx 1 &E

3 (3) Fa A [for $E on 2]

1 (4) $xGx 1 &E

5 (5) Ga A [for $E on 4]

3,5 (6) Fa & Ga 3,5 &I

3,5 (7) $x(Fx & Gx) 6 $I

1,3 (8) $x(Fx & Gx) 4,7 $E (5)

1 (9) $x(Fx & Gx) 2,8 $E (3)