MA 587 / Spring2010

Lecture 27

General variation inequality:

H-Hilbert’s Space:

Properties:

1.  Vector Space

2.  Inner Product

a.  < > :Η×Η →R

b.  For Rn , inner product is defined as: <xy>=xTy

c.  For Function Space Η1 : fg>=0Lfxgx+ fg

3.  u=<u,u12

COMPLETE:

Cauchy criteria characterize convergence:

um→u in Η

iff um-u ↓0

Completeness Property:

um→ u

iff um-un < ∈ for n,m≥N∈

a : Η×Η→R

l : Η→R

au,ϕ=lϕ for all ϕ

Ju=12au,u-lu

Η=Η01

au,ϕ=T0Luxϕx

lϕ=0Lfϕ

K is contained in H:

1.  Convex:

Any line joining two points should lie in the set K.

2.  Closed:

K contains its boundary.

Definitions:

Energy: u∈K

Ju=min Iv v∈K

Variational Inequality :

au,ϕ-u≥lϕ-u

u+tϕ-u=1-tu+tϕ

Ju=Ju+tϕ-u

Assumptions:

·  a:Η×Η →R Symmetric Bi-linear

·  l:Η→R Linear

Ju+tϕ-u=⋯

=Ju+tau,ϕ-u+t2aϕ-u,ϕ-u-tlϕ-u

Ju+tϕ-u-Jut=au,ϕ-u-lϕ-u+taϕ-u,ϕ-u≥0

Let t=1

Jϕ-Ju=au,ϕ-u-lϕ-u+aϕ-u,ϕ-u

≥0 +

Jϕ-Ju≥0

EXISTENCE:

Use Energy and Cauchy criteria

Assume:

·  H is Hilbert space

·  K is convex

·  K is closed

·  a(u,v) is symmetric

·  a(u,v) is bilinear

·  a(u,v) is coercive

·  a(u,v) is bounded

·  l(u) is linear

·  L(u) is bounded

a:Η×Η →R Symmetric Bi-linear

c1|u|2≤a(u,u)≤c2|u|2

Coercive Bounded

l:H R

Linear: |lu|≤c3|u|

Bounded

Outline

-M≤Jv ∀ v ε K

d≤Jum & Jum↓d

2*Ju+v2+au-v2,u-v2=Ju+J(v)

Where u um and v vm

Jum Jun

d d+ ε

c1um-un22≤aum-un2,um-un2≤d+ε+d+ε-2d=2ε

So, um u

·  FEM for membrane with an obstacle

Obstacle region where membrane adheres to the obstacle.

Obstacle: Ψ0(x,y)

u(x,y)≥Ψ0(x,y)

If u is NOT on the obstacle, then :-Tuxx+uyy=f≤0

for
u(x,y)≥Ψ0(x,y)

i.e. above the obstacle.

au,∅=T(ux∅x+uy∅y)

l∅=f∅

H=u ∈ L2(Ω)|(ux2+uy2+u)<∞

K=u ∈H|u≥Ψ0,u≡given on ∂Ω

A=a∅i,∅j

d=l(ϕi)

K=u ∈ Rn|uj≥Ψoj

H→R

au,∅→uTA∅

l(∅)→dT∅

Take A→reduced system matrix

Store the non-zero terms in the reduced stiffness matrix to improve the SOR. Otherwise, all the extra terms get solved.

um+13 from G.S

um+2/3 from SOR

um+1 from projection

=maxΨ0,ujm+2/3

Only one extra line is required in the code for SOR to make it SOR projection.

Use fem2dsurelt.m to find surrounding elements and surrounding nodes.