CALCULUS 2 AUGUST 2017
# / Day / Date / Assignment / Description0 / M / 8/14 / Fill out information sheet / Email Mrs Thomas before 5 pm today! Email Mrs Thomas at
On the subject line put your name and period #
1 / Tu / 8/15 / Worksheet 1 #2, 5, 7, 8, 9, 13, 44, 50
Print Derivative Rule Sheet / Derivative Review
2 / W / 8/16 / p.741 #9 (find Cartesian equation & graph on graph paper);
p.749 #3,5, 9and Worksheet 1 #11,12,14, 27 / Taking first and second derivatives of parametric equations.
3 / Th / 8/17 / p.778-779 #33, 41
p.181 #5, 10, 13, 22, 29, 39, 42, 45, 49,
54a, 54b / Continue investigating first and second derivatives of equations given parametrically.
4 / F / 8/18 / p.778–779 #34, 42;
p.181 #6, 19, 31, 43, 53a
and Worksheet 1 #28, 30, 36, 49 / Review for the upcoming test.
5 / M / 8/21 / p.741 #11, 16 and p.749 #1, 8, 10 and Worksheet 1 #5, 22, 32 / Review for tomorrow's test
6 / Tu / 8/22 / TEST #1 TODAY!!!!!
Read p. 61–64
Do p.65 #18–30 even, 33, 34, 35 / Take our first easy test.
Review limits of rational functions.
7 / W / 8/23 / p.65 #19, 25; p. 74 #7, 16; and p. 57 #1
If given a graph in the problem, you must include it in your homework / Learn the rigorous definition of limit.
8 / Th / 8/24 / p. 84 #2, 9, 19a, 19b, 20a, 20b, 50
p. 152 #36, 38, 41, 42, 47, 66
(Remember to include all graphs!!) / Review the definition of limits; right- and left-hand limits; and limits of trigonometric functions.
9 / F / 8/25 / Worksheet #2 Directions: Type in 12 point; Answer in complete sentences in paragraph form; Will be turned in Monday / To get you to think about what is important to you.
10 / M / 8/28 / p. 65 #16,18,26,30,36,50,53a
p. 83 #1, 4 and p. 152 #37,41, 44 / More work with limits.
11 / Tu / 8/29 / p. 85 #22–32 even, 38
p. 230 #8, 11, 14, 15, 24, 36 / Limits as x approaches ±∞
12 / W / 8/30 / p. 95 #1–10, 36, 38, 40, 45 / Continuity at a Point; IVT
13 / Th / 8/31 / LATE START
p. 496 #1, 4, 6, 9, 18, 32, 33, 42, 43, 59, 61, 65
ALSO DO THESE:
1. 2. 3. / To use L’Hopital’s Rule for indeterminate forms
Bring your textbook to class tomorrow!!!!
14 / F / 9/1 / MINIMUM DAY & RALLY
p. 83–86 #3,10,20,27,34, 40
p. 95–97 #6, 20, 29, 37, 39
p. 230 #3,7,17,19 and p. 496 #10,28,34,45
THIS IS A LONG ASSIGNMENT / Review for Test #2
Bring your textbook to class today!!!!
M / 9/4 / NO SCHOOL
15 / Tu / 9/5 / p. 83–86 #1,7,19,25; p.95–97 #5,36,40 p. 230 #21,23; p. 496 #3,24,51 / Final review for tomorrow's easy test
16 / W / 9/6 / TEST#2
p.296–297 #13,18,20,22,24,29,31,42,52 Ignore the instructions in the book –– just find the integrals. / 1. Test on limits, continuity, and l'Hopital's Rule.
2. Review integration and the most-complicated rule.
ANSWERS:
Assignment #2:
9. y = x2(see graph below)
3. y = – x + 2, – / 5. y = x + , –2 / 9. y = x – 4,
Assignment #3:
33. y = 2x + 1 (see graph below) / 41. y = x + , / 5. 2(x + 1)(2x2+ 4x + 1)10. / 13. 8cos3(1 – 2t)sin(1 – 2t) / 22. cos+
29. – / 39. / 42.
45. – / 49. / 54a. show work
54b. show work / I1. 6.667% / I2. 60%
Assignment #4:
34. y = 1 – x(see graph below) / 42. y = –3x + , 6 / 6. 3(4 – x)–2 / 19. / 31.
43. / 53a. / 28. A / 30. E / 36. E
49. B / I1. 5 / I2.
– csc 2x cot 2x
Assignment #5: (MY FAVORITE NUMBER !!!!!)
11. y = Graph is 1st quadrant portion of parabola vertex at (0,0) opens right, motion to the right / 16. y = –x + 2 Graph is a line through (0,2) and (2,0) motion is from right to left1. y = –x + 2, = – / 8. y = –2x – 1, = –
10. y = –x – 1, =1 / 5. E
22. A / 32. C
Assignment #6:
18. – / 20. –3 / 22. – / 24. – / 26. / 28. 16 / 30. – / 33a. –1033b. –20 / 33c. –1 / 33d. / 34a. 0 / 34b. 0 / 34c. 9 / 34d. 3 / 35a. 4
35b. –21 / 35c. –12 / 35d. –
Assignment #7:
19. –7 / 25. / 7. d = 0.1 / 16d = .01 / 1a. does not exist1b. 1 / 1c. 0
Graphs:
HW #2 / HW #3 / HW #4p.741 #9
/ p. 778 #33
/ p. 778 #34
Assignment #9
7) C / 8) C / 2) TFFTTTTTTFT9a) D: 0 ≤ x ≤ 2 R: 0 < y ≤ 1 and 2 / 9b) (0,1) (1,2) / 9c) x = 2 d) x = 0
19a) 1 / 19b) / 20a) 0
20b) 1 / 50) see below / 36)
38) 2 / 41) 2 / 42) 0
47) / 66) cos x
50) f(–x) = f(x) Since lim as x2– = 7, then lim as x–2+ = 7.
However, nothing can be said about lim as x–2– because we don't know lim as x2+.
Assignment #10
9) D / 10) C / 16) / 18) – / 26)30) – / 36a) 1 / 36b) 0 / 36c) / 50a) 4
50b) –2 / 53a) 0 show graph / 1) TTFTTTFFFFTF / 4a) 1,1,2 / 4b) yes 1
4c) 4,4 / 4d) yes 4 / 37) 2 / 41) 2 / 44) 1
Assignment #11
11) C / 12) D / 22) –∞ / 24) ∞ / 26) ∞ / 28) –∞ / 30) ∞ ,–∞ / 32) ∞38a) ∞ / 38b) –∞ / 38c) ∞ / 38d) –∞ / 8) 0 / 11a) / 11b) / 14a) 0
14b) 0 / 15a) –∞ / 15b) ∞ / 24a) –1 / 24b) –1 / 36)
Assignment #12
13) A / 14) E / 1) no, f(2) does not exist / 2) no, lim as x3 ≠ g(3)3) yes / 4) no, lim as x1– ≠ lim as x1+ / 5) yes, yes,yes,yes / 6) yes,yes,no,no
7) no,no / 8) –1 ≤ x < 3, except 0,1,2 / 9) 0 / 10) 2
36) 7 / 38) / 40) – / 45) Intermediate Value Theorem
Assignment #13
15) A / 16) A / 1) / 4) / 6) – / 9) –16 / 18) 2 / 32) 0 / 32) 033) 0 / 42) 0 / 43) / 59) d / 61) / 65) show work / 1) 1 / 2) –1 / 3) no limit
Assignment #14
17) A / 18) A / 3a) 2 and 1 / 3b) no, lim DNE / 3c) 3 and 33d) yes, 3 / 10a) D: all reals
R: –1 ≤ y ≤ 1 / 10b) all reals except –1,1 / 10c) none / 10d) none
20) 0, 1 / 27) ∞ / 34) ∞ / 40a) ∞ / 40b) –∞
40d) – / 40c) 0 / 6a) yes, 1 / 6b) yes, 2 / 6c) no
6d) no / 20) see below / 29) 0 / 37) / 39)
57) yes because of
IVT / 3a) / 3b) / 7) 0 / 17a) 7
17b) 7 / 19a) –∞ / 19b) ∞ / 10) – / 28) 1
34) 3 / 45) 1 / 20) all x except at odd integer multiples of
Assignment #15
19) B / 20) B / 1) TTFTTTFFFFTF / 7b) f(x) = f(x) = 17c) yes f(x) = 1 / 19a) 1 / 19b) / 25) –∞
5) yes,yes,yes,yes / 36) 7 / 40) – / 21a) ∞
21b) –∞ / 23a) – / 23b) – / 3) –
24) / 51) 1
Assignment #16
21) A / 22) A / 13) –3/2 + C / 18) 3(2 – 1)4/3 + C20) 2+ C / 22) 4 + C / 24) –cos(8z – 5) + C / 29) 6 + C
31) –cos+ C / 42) – + C / 52) y = 3(x2 + 8)2/3 – 12
EXTRA CREDIT AND GRADING POLICY
- Extra Credit is due at the BEGINNING OF THE PERIOD, on a SEPARATE,FULL SHEET OF PAPER. Turn into the basket in the back of the room before the bell rings.
- Make sure to include the full heading: NAME, DATE, PERIOD, ROW-SEAT, EC # in ink.
- Show ALL work, SIGN INTEGRITY.
- You may NOT receive any help from ANYONE or ANYTHING.
- Work must match the answer or you will NOT receive any credit for the problem.
- Correct work + Correct Answer + Integrity = 5 points each
# / PROBLEM
1 /
2 /
3 /
4 /
5 /
6 / The Circle circumscribed about acute triangle T has area pi. If the length of the longest side of triangle T is x, what is the least possible value of x?
7 / p.75 #36
8 /
9 / Compute the sum of all positive two-digit numbers containing the digit 3. (no calculator)
10 / Sylvia is standing in a line. To pass the time, she determines that 32% of the people in the line are standing in front of her, while 64% of the people are standing behind her. How many people are there in the line all together? (no calculator)
11 / What is the maximum number of regions into which
a circle and a rectangle can divide the plane? For instance, the configuration atright creates 4 regions. (no calculator)
12 / p.96 #46(without using a graph)
13 / Recall that quadrant II consists of all points Suppose that a line does not pass through quadrant II. Which must be true of this line? Write A, B, ‘both’, or ‘neither’ as your answer and show why.
(A) The slope m is positive (B) The y-intercept b is negative (no calculator)
14 /
15 / In a 10-km race, First Runner beat Second Runner by 2 km, and First Runner beat Third Runner by 4 km. If all three runners always ran at constant rates, by how many km did Second Runner beat Third Runner?
16 /