3.1 Simplifying Monomials using Laws of ExponentsName:
● Recall – Exponential Expressions
bn
Expand and simplify each expression.
a. 22 • 23b. (x3)2 c.
● The Properties of exponents apply onlyto monomials.
Monomials / Binomials / TrinomialsExamples:
● The Properties of Exponents
Property / Operation(s) / ExamplesZero Exponent Property
b0 = 1 / none / 20 = 1 = 1 0.25x0 = 0.25
Exponent Property of 1
b1 = b or b = b1 / none / ‒21 = ‒2 = (5x2y3)1 = 5x2y3
Negative Exponent
b‒n = = or = = bn / Find the Reciprocal.
Remove the negative sign. / = = = =72 = 49
Product
bn • bm = bm + n or (bn)(bm) = bm + n / Multiplythe coefficients.
Add the exponents. / 22(24) = 26 = 64 ‒x2• ‒5x = ‒1(‒5)x2+1
= 5x3
Quotient
= bn – m / Dividethe coefficients.
Subtract the exponents. / = y7 ‒ 4 = y3 = =
Power-to-a-Power
(bm)n = bm • n
(apbm)n = ap • n bm • n
= = / Distribute the exponent to each base’s exponent.
Multiply the exponents. / (72)3 = 72 •3 = 76 = 117,649
(x2)4 = x2 •4 = x8
(‒2a2b)3 = (‒21a2b1)3 = ‒21 •3a2 •3b1 •3
= ‒23a6b4 = ‒8a6b4
● Negative Exponents – Find thereciprocalandremovethe negative sign.
Example 1: Simplify each expression.
a. 4‒3b. x‒9
c. -3a‒2bd. e. f. 5x2y‒2
● Multiplying Powers with the same Base– multiplythe coefficients, addthe exponents.
Example 2: Simplify each expression.
a. 64 • 6‒2b. y4 • y2
c. 2x2 • xd. (‒3a4)(3a2)e. (x‒5)(‒3x7)
● Dividing Powers with the same Base – dividethe coefficients, subtractthe exponents
Example 3: Simplify each expression.
a. b.
c. d. e.
● Raising a Power to a Power – distributethe exponent to each base’s exponent andmultiplythe exponents.
Example 4: Simplify each expression.
a. (‒34)3 b. (x2)4c. (‒2x)2
d. (y2)‒5` e. (‒5xy2)3 f. 2x3(4x)2g.
Practice:
Simplify each expression.Example 1
1. 1302. 5‒33. (7)‒24. 46‒15. 60
6. 12x‒27.6bc08. 11x09. 3m‒8p010.8‒2q3r‒5
11. 10a 4b012. 13. 15. 16.
Simplify each expression. Example 2
17. z8z518. 4k‒3· 6k419.(5b3)(3b6)20. (13x‒8)(3x10)
21. (2h5)(4h‒3)22.8n · 11n923.(t3)(t6)(t9)24. (x–8)(4x12)
25. (5d‒5)(6d2)26.mn2·m2n‒4·mn‒127. (6a3b‒2)( 4ab‒8)
28. (12mn)( m3n‒2p5)(2m)29. q4·r‒5·q3·r530. 3c7d‒2· 5c‒3d
Simplify each expression.Example 3
31. 32. 33. 34.
35. 36. 37. 38.
39. 40. 41. 42.
Simplify each expression. Example 4
43. (z5)344. (m4)1045. (v7)246. (k4)3
47. (x7)‒248. (r4)‒649.b(b‒8)‒350. h2(h7)0
51. (m2)7n552. (x6)2(y3)053. (g5)‒5(g6)‒254. (v2)3(w4)‒3
55. (4a3)2a556. (m4n3)7(m4)357. (xy2)(xy2)‒1 58. z(y‒5z7)‒1y‒5
Mixed practice:
59. 60. 61. 62.
63. 64. 65. 66.
67. 68. 69. 70.