Catalysis Letters

Supplementary Material for

A Comparative DFT study on the Catalytic Oxidation of Nitric Oxide by Pd2 and PdM (M= Cu, Rh, Ag, Au, Pt)

Pakiza Begum[a], and Ramesh Chandra Dekaa,*

Correspondence to: Ramesh Chandra Deka (E-mail: )

Figure S1a. Results of IRC calculation from NO oxidation over Pd2 catalytic system along intrinsic reaction coordinate performed for TS1 and TS2.

Figure S1b. Diagram of a catalytic reaction, showing the energy profile for NO oxidation over PdAu (Path I) depending on the reaction coordinate for the two transition states involved.

Figure S1bˊ. Diagram of a catalytic reaction, showing the energy profile for NO oxidation over AuPd (Path I) depending on the reaction coordinate for the two transition states involved.

Figure S1c. Energy profile for NO oxidation over PdAg (Path I) bimetallic catalyst along the intrinsic reaction coordinate linking the reactants and the products via the transition states involved.

Figure S1cˊ. Energy profile for NO oxidation over AgPd (Path II) bimetallic catalyst along the intrinsic reaction coordinate linking the reactants and the products via the transition states involved.

Figure S1d. Intrinsic reaction coordinate (IRC) calculations performed for TS1 and TS2 to follow the reaction path in both direction from the transition state structures to the analogous reactant and product structures for CuPd (Path I) catalytic system.

Figure S1dˊ. Intrinsic reaction coordinate (IRC) calculations performed for TS1 and TS2 to follow the reaction path in both direction from the transition state structures to the analogous reactant and product structures for PdCu (Path II) catalytic system.

Figure S1e. Energy profile for NO oxidation over PdPt (Path I) bimetallic catalyst along the intrinsic reaction coordinate linking the reactants and the products via the transition states involved.

Figure S1eˊ. Energy profile for NO oxidation over PdPt (Path I) bimetallic catalyst along the intrinsic reaction coordinate linking the reactants and the products via the transition states involved.

Figure S2. The various intermediate states and geometrical information of the detailed mechanism studied in the oxidation of nitric oxide over PdAg catalytic system. The bond lengths are in Å. The imaginary frequency associated with the two transition states are shown in bracket.

Figure S3. The various intermediate states and geometrical information of the detailed mechanism studied in the oxidation of nitric oxide over PdCu bimetallic catalyst system. The bond lengths are in Å. The imaginary frequency associated with the transition states are shown in bracket.

Figure S4. The various intermediate states and geometrical information of the detailed mechanism studied in the oxidation of nitric oxide over PdPt catalytic system. The bond lengths are in Å. The imaginary frequency associated with the two transition states are shown in bracket.

Figure S5. The various intermediate states and geometrical information of the detailed mechanism studied in the oxidation of nitric oxide over PdRh heteroatomic system. The bond lengths are in Å. The imaginary frequency associated with the two transition states are shown in bracket.

Table S(a). Electronic Configurations of Lowest-Energy Bare and O2-Adsorbed PdM (M = Pd, Pt, Cu, Ag, Au and Rh) Dimers from NBO Analysis using B3LYP Functional. O1 is directly attached to the M of PdM.

Complexes / Pd / M / O(1) / O(2)
O2 / 2S(0.89)2p(1.59)3S(0.01) / 2S(0.89)2p(1.59)3S(0.01)
Pd2 / 5S(0.09)4d(9.89)5p(0.02) / 5S(0.09)4d(9.89)5p(0.02)
PdAg / 5S(0.49)4d(9.50)5p(0.01) / 5S(0.99)4d(9.98)5p(0.03)
PdAu / 5S(0.27)4d(4.12)5p(0.01) / 6S(0.73)5d(4.85)6p(0.01)
PdCu / 5S(0.16)4d(4.50) / 4S(0.38)3d(4.94)4p(0.02)
PdPt / 5S(0.13)4d(9.70)5p(0.02) / 6S(0.27)5d(9.86)6p(0.01)
PdRh / 5S(0.45)4d(4.93)5p(0.02) / 5S(0.36)4d(3.23)5p(0.01)
Pd2O2 / 4d(9.34)5p(0.04)6p(0.02) / 4d(9.34)5p(0.04)6p(0.02) / 2S(1.87)2p(4.48)3p(0.01) / 2S(1.87)2p(4.48)3p(0.01)
PdAgO2 / 5S(0.25)4d(4.97)5p(0.01) / 5S(0.52)4d(4.96)5p(0.04) / 2S(0.91)2p(1.77)3p(0.01) / 2S(0.92)2p(1.63)
AgPdO2 / 5S(0.25)4d(4.60)5p(0.06) / 5S(0.61)4d(4.99)5p(0.01) / 2S(0.92)2p(1.87)3p(0.01) / 2S(0.93)2p(1.76)
PdAuO2 / 5S(0.22)4d(4.97)5p(0.01) / 6S(0.71)5d(4.91)6p(0.04) / 2S(0.91)2p(1.71)3p(0.01) / 2S(0.92)2p(1.59)
AuPdO2 / 5S(0.19)4d(4.64)5p(0.06) / 6S(0.70)5d(4.97)6p(0.01) / 2S(0.93)2p(1.74) / 2S(0.91)2p(1.84)3p(0.01)
PdCuO2 / 5S(0.25)4d(4.94) / 4S(0.48)3d(4.85)4p(0.08) / 2S(0.91)2p(1.88) / 2S(0.93)2p(1.67)
CuPdO2 / 5S(0.26)4d(4.63)5p(0.06) / 4S(0.55)3d(4.98)4p(0.01) / 2S(0.92)2p(1.89)3p(0.01) / 2S(0.93)2p(1.77)
PdPtO2 / 5S(0.27)4d(9.23)5p(0.04)6p(0.02) / 6S(0.64)5d(9.06)6p(0.04)7p(0.02) / 2S(1.86)2p(4.47)3p(0.01) / 2S(1.88)2p(4.46)3p(0.01)
PdRhO2 / 5S(0.16)4d(4.68)5p(0.02) / 5S(0.13)4d(3.82)5p(0.02) / 2S(0.94)2p(2.21) / 2S(0.92)2p(2.08)

Table S(b). Electronic Configurations of Lowest-Energy Bare and NO-Adsorbed PdM (M = Pd, Pt, Cu, Ag, Au and Rh) Dimers from NBO Analysis using B3LYP Functional.

Complexes / Pd / M / N / O
NO / 2S(0.84)2p(1.19)4S(0.01)3d(0.01) / 2S(0.87)2p(2.06)3S(0.01)
Pd2 / 5S(0.09)4d(9.89)5p(0.02) / 5S(0.09)4d(9.89)5p(0.02)
PdAg / 5S(0.49)4d(9.50)5p(0.01) / 5S(0.99)4d(9.98)5p(0.03)
PdAu / 5S(0.27)4d(4.12)5p(0.01) / 6S(0.73)5d(4.85)6p(0.01)
PdCu / 5S(0.16)4d(4.50) / 4S(0.38)3d(4.94)4p(0.02)
PdPt / 5S(0.13)4d(9.70)5p(0.02) / 6S(0.27)5d(9.86)6p(0.01)
PdRh / 5S(0.45)4d(4.93)5p(0.02) / 5S(0.36)4d(3.23)5p(0.01)
Pd2NO / 5S(0.12)4d(4.58)5p(0.01) / 5S(0.17)4d(4.65)5p(0.02) / 2S(0.86)2p(1.50)3p(0.01) / 2S(0.89)2p(2.16)
PdAgNO / 5S(0.19)4d(9.76)5p(0.01) / 5S(0.91)4d(9.88)5p(0.09) / 2S(1.71)2p(3.24)3S(0.02)3p(0.03) / 2S(1.77)2p(4.39)3p(0.01)
AgPdNO / 5S(0.68)4d(9.17)5p(0.14) / 5S(0.95)4d(9.97)5p(0.01) / 2S(1.64)2p(3.25)3S(0.02)3p(0.02) / 2S(1.75)2p(4.40)3p(0.01)
PdAuNO / 5S(0.14)4d(9.68)5p(0.01) / 6S(1.33)5d(9.62)6p(0.12) / 2S(1.69)2p(3.22)3S(0.02)3p(0.03) / 2S(1.76)2p(4.38)3p(0.01)
AuPdNO / 5S(0.56)4d(9.08)5p(0.14) / 6S(1.30)5d(9.90)6p(0.01) / 2S(1.62)2p(3.22)3S(0.02)3p(0.02) / 2S(1.75)2p(4.36)3p(0.01)
PdCuNO / 5S(0.26)4d(9.73)5p(0.01) / 4S(0.90)3d(9.75)4p(0.15) / 2S(1.68)2p(3.31)3S(0.01)3p(0.03) / 2S(1.77)2p(4.40)3p(0.01)
CuPdNO / 5S(0.70)4d(9.18)5p(0.14) / 4S(0.94)3d(9.94)4p(0.01) / 2S(1.63)2p(3.25)3S(0.02)3p(0.02) / 2S(1.76)2p(4.40)3p(0.01)
PdPtNO / 5S(0.11)4d(4.49) / 6S(0.52)5d(4.35)6p(0.08) / 2S(0.77)2p(1.62)3S(0.01)3p(0.01) / 2S(0.88)2p(2.17)
PtPdNO / 5S(0.31)4d(4.43)5p(0.08) / 6S(0.35)5d(4.15) / 2S(0.81)2p(1.72)3S(0.01)3p(0.01) / 2S(0.88)2p(2.27)
PdRhNO / 5S(0.25)4d(9.51)5p(0.02) / 5S(0.29)4d(8.53)5p(0.04)6p(0.02) / 2S(1.67)2p(3.28)3S(0.01)3p(0.02) / 2S(1.78)2p(4.59)3p(0.01)
RhPdNO / 5S(0.72)4d(9.06)5p(0.16) / 5S(0.27)4d(8.68)5p(0.01) / 2S(1.62)2p(3.28)3S(0.02)3p(0.02) / 2S(1.75)2p(4.40)3p(0.01)

[a] Pakiza Begum and Ramesh Chandra Deka

Tezpur University, Department of Chemical Sciences, Tezpur University, Tezpur, Assam, India, 784028.