NATIONALQUALIFICATIONSCURRICULUMSUPPORT
Physics
OurDynamicUniverse
Questions
JamesPage
ArthurBaillie
[HIGHER]
Contents
Problems
Revisionproblems–Speed4
Revisionproblems–Acceleration5
Revisionproblems–Vectors6
Section1:Equationsofmotion
Equationsofmotion8
Motion–timegraphs10
Section2:Forces,energyandpower
Balancedandunbalancedforces19
Resolutionofforces24
Workdone,kineticandpotentialenergy27
Section3:Collisionsandexplosions29
Section4:Gravitation
Projectiles35
Gravityandmass38
Section5:Specialrelativity
Relativity–Fundamentalprinciples40
Relativity–Timedilation42
Relativity–Lengthcontraction44
Relativityquestions45
Section6:Theexpandinguniverse
TheDopplereffectandredshiftofgalaxies48
Hubble’sLaw52
Section7:BigBangtheory56
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010
OUR DYNAMIC UNIVERSE: PROBLEMS
Problems
Revisionproblems–Speed
1.TheworlddownhillskiingspeedtrialtakesplaceatLesArcseveryyear.Describeamethodthatcouldbeusedtofindtheaveragespeedoftheskieroverthe1kmrun.Yourdescriptionshouldinclude:
(a)anyapparatusrequired
(b)detailsofwhatmeasurementsneedtobetaken
(c)anexplanationofhowyouwouldusethemeasurementstocarryoutthecalculations.
2.Anathleterunsa1500mraceinatimeof3min40s.Calculatehisaveragespeedfortherace.
3.Ittakeslight8·0minutestotravelfromtheSuntotheEarth.HowfarawayistheSunfromtheEarth?
(speedoflight=3·0×108m s1).
4.ThedistancebetweenLondonandNewYorkis4800km.AplanetravelsatanaveragespeedofMach1·3betweenLondonandNewYork.
Calculatethetime,tothenearestminute,forthisjourney.(Mach1isthespeedofsound.Takethespeedofsoundtobe340m s1).
5.Thegraphshowshowthespeedofagirlvarieswithtimefromtheinstantshestartstorunforabus.
ShestartsfromstandstillatOandjumpsonthebusatQ.
Find:
(a)thesteadyspeedatwhichsheruns
(b)thedistancesheruns
(c)theincreaseinthespeedofthebuswhilethegirlisonit
(d)howfarthebustravelsduringQR
(e)howfarthegirltravelsduringOR.
6.Aground-to-airguidedmissilestartsfromrestandacceleratesat150ms2for5s.Whatisthespeedofthemissile5safterlaunching?
7.AnAstonMartinhasanaccelerationof6ms2fromrest.Whattimedoesittaketoreachaspeedof30ms1?
8.Acaristravellingataspeedof34ms1.Thedriverappliesthebrakesandthecarslowsdownatarateof15ms2.Whatisthetimetakenforthespeedofthecartoreduceto4ms1?
Revisionproblems–Acceleration
1.Askateboarderstartingfromrestgoesdownauniformslopeandreachesaspeedof8ms1in4s.
(a)Whatistheaccelerationoftheskateboarder?
(b)Calculatethetimetakenfortheskateboardertoreachaspeedof12ms1.
2.IntheTourdeFranceacyclististravellingat16ms1.Whenhereachesadownhillstretchheacceleratestoaspeedof20ms1in2·0s.
(a)Whatistheaccelerationofthecyclistdownthehill?
(b)Thecyclistmaintainsthisconstant acceleration.Whatishisspeedafterafurther2·0s?
(c)Howlongafterhestartstoacceleratedoeshereachaspeedof
28ms1?
3.Astudentsetsuptheapparatusshowntofindtheaccelerationofatrolleydownaslope.
Lengthofcardontrolley=50mm
Timeonclock1=0·10s(timetakenforcardtointerrupttoplightgate)
Timeonclock2=0·05s(timetakenforcardtointerruptbottomlightgate)
Timeonclock3=2·50s(timetakenfortrolleytotravelbetweentopandbottomlightgate)
Usetheseresultstocalculatetheaccelerationofthetrolley.
Revisionproblems–Vectors
1.Acartravels50kmduenorthandthenreturns30kmduesouth.Thewholejourneytakes2hours.
Calculate:
(a)thetotaldistancetravelledbythecar
(b)theaveragespeedofthecar
(c)theresultantdisplacementofthecar
(d)theaveragevelocityofthecar.
2.Agirldeliversnewspaperstothreehouses,X,YandZ,asshowninthediagram.
ShestartsatXandwalksdirectlyfromXtoYandthentoZ.
(a)Calculatethetotaldistancethegirlwalks.
(b)Calculatethegirl’sfinaldisplacementfromX.
(c)Thegirlwalksatasteadyspeedof1ms1.
(i)CalculatethetimeshetakestogetfromXtoZ.
(ii)Calculateherresultantvelocity.
3.Findtheresultantforceinthefollowingexample:
4.Statewhatismeantbyavectorquantityandscalarquantity.
Givetwoexamplesofeach.
5.Anorienteerruns5kmduesouththen4kmduewestandthen2kmduenorth.Thetotaltimetakenforthisis1hours.Calculatetheaveragespeedandaveragevelocityoftheorienteerforthisrun.
6.Afootballiskickedupatanangleof70ºat15ms1.
Calculate:
(a)thehorizontalcomponentofthevelocity
(b)theverticalcomponentofthevelocity.
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010
SECTION 1: EQUATIONS OF MOTION
Section1:Equationsofmotion
Equationsofmotion
1.Anobjectistravellingataspeedof8·0ms1.Itthenacceleratesuniformlyat4·0ms2for10s.Howfardoestheobjecttravelinthis
10s?
2.Acaristravellingataspeedof15·0ms1.Itacceleratesuniformlyat6·0ms2andtravelsadistanceof200mwhileaccelerating.Calculatethevelocityofthecarattheendofthe200m.
3.Aballisthrownverticallyupwardstoaheightof40maboveitsstartingpoint.Calculatethespeedatwhichitwasthrown.
4.Acaristravellingataspeedof30·0ms1.Itthenslowsdownat
1·80ms2untilitcomestorest.Ittravelsadistanceof250mwhileslowingdown.Whattimedoesittaketotravelthe250m?
5.Astoneisthrownwithaninitialspeed5·0ms1verticallydownawell.Thestonestrikesthewater60mbelowwhereitwasthrown.
Calculatethetimetakenforthestonetoreachthesurfaceofthewater.
Theeffectsoffrictioncanbeignored.
6.Atennisballlauncheris0·60mlong.Atennisballleavesthelauncherataspeedof30ms1.
(a)Calculatetheaverageaccelerationofthetennisballinthelauncher.
(b)Calculatethetimetheballacceleratesinthelauncher.
7.Inanexperimenttofindgasteelballfallsfromrestthroughadistanceof0·40m.Thetimetakentofallthisdistanceis0·29s.
Whatisthevalueofgcalculatedfromthedataofthisexperiment?
8.Atrolleyacceleratesuniformlydownaslope.Twolightgatesconnectedtoamotioncomputerarespaced0·50mapartontheslope.Thespeedsrecordedasthetrolleypassesthelightgatesare0·20ms1and0·50ms1.
(a)Calculatetheaccelerationofthetrolley.
(b)Whattimedoesthetrolleytaketotravelthe0·5mbetweenthelightgates?
9.Ahelicopterisrisingverticallyataspeedof10·0ms1whenawheelfallsoff.Thewheelhitstheground8·00slater.
Calculatetheheightofthehelicopterabovethegroundwhenthewheelcameoff.
Theeffectsoffrictioncanbeignored.
10.Aballisthrownverticallyupwardsfromtheedgeofacliffasshowninthediagram.
Theeffectsoffrictioncanbeignored.
(a)(i)Whatistheheightoftheballabovesealevel2·0safterbeingthrown?
(ii)Whatisthevelocityoftheball2·0safterbeingthrown?
(b)Whatisthetotaldistancetravelledbytheballfromlaunchtolandinginthesea?
Motion–timegraphs
1.Thegraphshowshowthedisplacementofanobjectvarieswithtime.
(a)Calculatethevelocityoftheobjectbetween0and1s.
(b)Whatisthevelocityoftheobjectbetween2and4sfromthestart?
(c)Drawthecorrespondingdistanceagainsttimegraphforthemovementofthisobject.
(d)Calculatetheaveragespeedoftheobjectforthe8secondsshownonthegraph.
(e)Drawthecorrespondingvelocityagainsttimegraphforthemovementofthisobject.¶
2.Thegraphshowshowthedisplacementofanobjectvarieswithtime.
(a)Calculatethevelocityoftheobjectduringthefirstsecondfromthestart.
(b)Calculatethevelocityoftheobjectbetween1and5sfromthestart.
(c)Drawthecorrespondingdistanceagainsttimegraphforthisobject.
(d)Calculatetheaveragespeedoftheobjectforthe5seconds.
(e)Drawthecorrespondingvelocityagainsttimegraphforthisobject.
(f)Whatarethedisplacementandthevelocityoftheobject0·5secondsafterthestart?
(g)Whatarethedisplacementandthevelocityoftheobject3secondsafterthestart?
3.Thegraphshowsthedisplacementagainsttimegraphforthemovementofanobject.
(a)Calculatethevelocityoftheobjectbetween0and2s.
(b)Calculatethevelocityoftheobjectbetween2and4sfromthestart.
(c)Drawthecorrespondingdistanceagainsttimegraphforthisobject.
(d)Calculatetheaveragespeedoftheobjectforthe4seconds.
(e)Drawthecorrespondingvelocityagainsttimegraphforthisobject.
(f)Whatarethedisplacementandthevelocityoftheobject0·5safterthestart?
(g)Whatarethedisplacementandthevelocityoftheobject3secondsafterthestart?
4.Anobjectstartsfromadisplacementof0m.Thegraphshowshowthe
velocityoftheobjectvarieswithtimefromthestart.
(a)Calculatetheaccelerationoftheobjectbetween0and1s.
(b)Whatistheaccelerationoftheobjectbetween2and4sfromthestart?
(c)Calculatethedisplacementoftheobject2secondsafterthestart.
(d)Whatisthedisplacementoftheobject8secondsafterthestart?
(e)Sketchthecorrespondingdisplacementagainsttimegraphforthemovementofthisobject.¶
5.Anobjectstartsfromadisplacementof0m.Thegraphshowshowthevelocityoftheobjectvarieswithtimefromthestart.
(a)Calculatetheaccelerationoftheobjectbetween0and2s.
(b)Calculatetheaccelerationoftheobjectbetween2and4sfromthestart.
(c)Drawthecorrespondingaccelerationagainsttimegraphforthisobject.
(d)Whatarethedisplacementandthevelocityoftheobject3secondsafterthestart?
(e)Whatarethedisplacementandthevelocityoftheobject4secondsafterthestart?
(f)Sketchthecorrespondingdisplacementagainsttimegraphforthemovementofthisobject.
6.Thevelocity-timegraphforanobjectisshownbelow.
Apositivevalueindicatesavelocityduenorthandanegativevalueindicatesavelocityduesouth.Thedisplacementoftheobjectis0atthestartoftiming.
(a)Calculatethedisplacementoftheobject:
(i)3saftertimingstarts
(ii)4saftertimingstarts
(iii)6saftertimingstarts.
(b)Drawthecorrespondingacceleration–timegraph.¶
7.Thegraphshowshowtheaccelerationaofanobject,startingfromrest,varieswithtime.¶
Drawagraphtoshowhowthevelocityoftheobjectvarieswithtimeforthe10secondsofthemotion.
8.Thegraphshowsthevelocityofaballthatisdroppedandbounces onafloor.
Anupwardsdirectionistakenasbeingpositive.
(a)InwhichdirectionistheballtravellingduringsectionOBofthegraph?
(b)DescribethevelocityoftheballasrepresentedbysectionCDofthegraph.
(c)DescribethevelocityoftheballasrepresentedbysectionDEofthegraph.
(d)WhathappenedtotheballatthetimerepresentedbypointBonthegraph?
(e)WhathappenedtotheballatthetimerepresentedbypointConthegraph?
(f)Howdoesthespeedoftheballimmediatelybeforereboundfromthefloorcomparewiththespeedimmediatelyafterrebound?
(g)Sketchagraphofaccelerationagainsttimeforthemovementoftheball.¶
9.Aballisthrownverticallyupwardsandreturnstothethrower3secondslater.Whichvelocity-timegraphrepresentsthemotionoftheball?
10.Aballisdroppedfromaheightandbouncesupanddownonahorizontalsurface.Whichvelocity-timegraphrepresentsthemotionoftheballfromthemomentitisreleased?
11.Describehowyoucouldmeasuretheaccelerationofatrolleythatstartsfromrestandmovesdownaslope.Youareprovidedwithametrestickandastopwatch.Yourdescriptionshouldinclude:
(a)adiagram
(b)alistofthemeasurementstaken
(c)howyouwouldusethesemeasurementstocalculatetheaccelerationofthetrolley
(d)howyouwouldestimatetheuncertaintiesinvolvedintheexperiment.
12.Describeasituationwherearunnerhasadisplacementof100mduenorth,avelocityof3ms1duenorthandanaccelerationof2ms2duesouth.Yourdescriptionshouldincludeadiagram.
13.Isitpossibleforanobjecttobeacceleratingbuthaveaconstantspeed?Youmustjustifyyouranswer.
14.Isitpossibleforanobjecttomovewithaconstantspeedfor5secondsandhaveadisplacementof0m?Youmustjustifyyouranswer.
15Isitpossibleforanobjecttomovewithaconstantvelocityfor5sandhaveadisplacementof0m?Youmustjustifyyouranswer.
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010
SECTION 2: FORCES, ENERGY AND POWER
Section2:Forces,energyandpower
Balancedandunbalancedforces
1.StateNewton’s1stLawofMotion.
2.Aliftofmass500kgtravelsupwardsataconstantspeed.
Calculatethetensioninthecablethatpullstheliftupwards.
3.(a)Afullyloadedoiltankerhasamassof2·0×108kg.
Asthespeedofthetankerincreasesfrom 0toasteadymaximumspeedof8.0ms1theforcefromthepropellersremainsconstantat3.0×106N.
(i)Calculatetheaccelerationofthetankerjustasitstartsfromrest.
(ii)Whatisthesizeoftheforceoffrictionactingonthetankerwhenitistravellingatthesteadyspeedof8.0ms1?
(b)Whenitsenginesarestopped,thetankertakes50minutestocometorestfromaspeedof8.0ms1.Calculateitsaveragedeceleration.
4.Thegraphshowshowthespeedofaparachutistvarieswithtimeafterhavingjumpedfromanaeroplane.
WithreferencetotheoriginofthegraphandthelettersA,B,C,DandEexplainthevariationofspeedwithtimeforeachstageoftheparachutist’sfall.
5.Twogirlspushacarofmass2000kg.Eachappliesaforceof50Nandtheforceoffrictionis60N.Calculatetheaccelerationofthecar.
6.Aboyonaskateboardridesupaslope.Thetotalmassoftheboyandtheskateboardis90kg.Hedeceleratesuniformlyfrom12ms1to
2ms1in6seconds.Calculatetheresultantforceactingonhim.
7.Aboxofmass30kgispulledalongaroughsurfacebyaconstantforceof140N.Theaccelerationoftheboxis4·0ms2.
(a)Calculatethemagnitudeoftheunbalancedforcecausingtheacceleration.
(b)Calculatetheforceoffrictionbetweentheboxandthesurface.
8.Acarofmass800kgisacceleratedfromrestto18ms1in12seconds.
(a)Whatisthesizeoftheresultantforceactingonthecar?
(b)Howfardoesthecartravelinthese12seconds?
(c)Attheendofthe12secondsperiodthebrakesareoperatedandthecarcomestorestinadistanceof50m.
Whatisthesizeoftheaveragefrictionalforceactingonthecar?
9.(a)Arocketofmass4·0×104kgislaunchedverticallyupwardsfromthesurfaceoftheEarth.Itsenginesproduceaconstantthrustof7·0×105N.
(i)Drawadiagramshowingalltheforcesactingontherocketjustaftertake-off.
(ii)Calculatetheinitialaccelerationoftherocket.
(b)Astherocketrisesthethrustremainsconstantbuttheaccelerationoftherocketincreases.Givethreereasonsforthisincreaseinacceleration.
(c)ExplainintermsofNewton’slawsofmotionwhyarocketcantravelfromtheEarthtotheMoonandformostofthejourneynotburnupanyfuel.
10.ArockettakesofffromthesurfaceoftheEarthandacceleratesto
90ms1inatimeof4·0s.Theresultantforceactingonitis40kNupwards.
(a)Calculatethemassoftherocket.
(b)Theaverageforceoffrictionis5000N.Calculatethethrustoftherocketengines.
11.Ahelicopterofmass2000kgrisesupwardswithanaccelerationof4·00ms2.Theforceoffrictioncausedbyairresistanceis1000N.Calculatetheupwardsforceproducedbytherotorsofthehelicopter.
12.Acrateofmass200kgisplacedonabalance,calibratedinnewtons,inalift.
(a)Whatisthereadingonthebalancewhentheliftisstationary?
(b)Theliftnowacceleratesupwardsat1·50ms2.Whatisthenewreadingonthebalance?
(c)Theliftthentravelsupwardsataconstantspeedof5·00ms1.Whatisthenewreadingonthebalance?
(d)Forthelaststageofthejourneytheliftdeceleratesat1·50ms2whilegoingup.Calculatethereadingonthebalance.
13.Asmallliftinahotelisfullyloadedandhasatotalmassof250kg.Forsafetyreasonsthetensioninthepullingcablemustneverbegreaterthan3500N.
(a)Whatisthetensioninthecablewhentheliftis:
(i)atrest
(ii)movingupwardsataconstantspeedof1ms1
(iii)movingupwardswithaconstantaccelerationof2ms2
(iv)acceleratingdownwardswithaconstantaccelerationof
2ms2.
(b)Calculatethemaximumpermittedupwardaccelerationofthefullyloadedlift.
(c)Describeasituationwheretheliftcouldhaveanupwardaccelerationgreaterthanthevaluein(b)withoutbreachingsafetyregulations.
14.Apackageofmass4·00kgishungfromaspring(Newton)balanceattachedtotheceilingofalift.
Theliftisacceleratingupwardsat3·00ms2.Whatisthereadingonthespringbalance?
15.Thegraphshowshowthedownwardspeedofaliftvarieswithtime.
(a)Drawthecorrespondingaccelerationagainsttimegraph.
(b)A4.0kgmassissuspendedfromaspringbalanceinsidethelift.Determinethereadingonthebalanceateachstageofthemotion.
16.Twotrolleysjoinedbyastringarepulledalongafrictionlessflatsurfaceasshown.
(a)Calculatetheaccelerationofthetrolleys.
(b)Calculatethetension,T,inthestringjoiningthetrolleys.
17.Acarofmass1200kgtowsacaravanofmass1000kg.Thefrictionalforcesonthecarandcaravanare200Nand500N,respectively.Thecaracceleratesat2.0ms2.
(a)Calculatetheforceexertedbytheengineofthecar.
(b)Whatforcedoesthetowbarexertonthecaravan?
(c)Thecarthentravelsataconstantspeedof10ms1.
Assumingthefrictionalforcestobeunchanged,calculate:
(i)thenewengineforce
(ii)theforceexertedbythetowbaronthecaravan.
(d)Thecarbrakesanddeceleratesat5·0ms2.
Calculatetheforceexertedbythebrakes(assumetheotherfrictionalforcesremainconstant).
18.Alogofmass400kgisstationary.Atractorofmass1200kgpullsthelogwithatowrope.Thetensioninthetowropeis2000Nandthefrictionalforceonthelogis800N.Howfarwillthelogmovein4s?
19.Aforceof60Nisusedtopushthreeblocksasshown.
Eachblockhasamassof8·0kgandtheforceoffrictiononeachblockis4·0N.
(a)Calculate:
(i)theaccelerationoftheblocks
(ii)theforcethatblockAexertsonblockB
(iii)theforceblockBexertsonblockC.
(b)Thepushingforceisthenreduceduntiltheblocksmoveatconstantspeed.
(i)Calculatethevalueofthispushingforce.
(ii)DoestheforcethatblockAexertsonblockBnowequaltheforcethatblockBexertsonblockC?Explain.¶
20.A2·0kgtrolleyisconnectedbystringtoa1·0kgmassasshown.Thebenchandpulleyarefrictionless.
(a)Calculatetheaccelerationofthetrolley.
(b)Calculatethetensioninthestring.
Resolutionofforces
1.Amanpullsagardenrollerwithaforceof50N.¶
(a)Findtheeffectivehorizontalforceappliedtotheroller.
(b)Describeandexplainhowthemancanincreasethiseffectivehorizontalforcewithoutchangingthesizeoftheforceapplied.
2.Abargeisdraggedalongacanalasshownbelow.
Whatisthesizeofthecomponentoftheforceparalleltothecanal?
3.Atoytrainofmass0·20kgisgivenapushof10Nalongtherailsatanangleof30ºabovethehorizontal.
Calculate:
(a)themagnitudeofthecomponentofforcealongtherails
(b)theaccelerationofthetrain.
4.Abargeofmass1000kgispulledbyaropealongacanalasshown.
Theropeappliesaforceof800Natanangleof40ºtothedirectionofthecanal.Theforceoffrictionbetweenthebargeandthewateris
100N.Calculatetheaccelerationofthebarge.
5.Acrateofmass100kgispulledalongaroughsurfacebytworopesattheanglesshown.
(a)Thecrateismovingataconstantspeedof1·0ms1.Whatisthesizeoftheforceoffriction?
(b)Theforcesarenoweachincreasedto140Natthesameangle.Assumingthefrictionforceremainsconstant,calculatetheaccelerationofthecrate.
6.A2·0kgblockofwoodisplacedonaslopeasshown.
Theblockremainsstationary.Whatarethesizeanddirectionofthefrictionalforceontheblock?
7.Arunwayis2·0mlongandraised0·30matoneend.Atrolleyofmass0·50kgisplacedontherunway.Thetrolleymovesdowntherunwaywithconstantspeed.Calculatethemagnitudeoftheforceoffrictionactingonthetrolley.
8.Acarofmass900kgisparkedonahill.Theslopeofthehillis15ºtothehorizontal.Thebrakesonthecarfail.Thecarrunsdownthehillforadistanceof50muntilitcrashesintoahedge.Theaverageforceoffrictiononthecarasitrunsdownthehillis300N.
(a)Calculatethecomponentoftheweightactingdowntheslope.
(b)Findtheaccelerationofthecar.
(c)Calculatethespeedofthecarjustbeforeithitsthehedge.
9.Atrolleyofmass2·0kgisplacedonaslopewhichmakesanangleof60ºtothehorizontal.
(a)Astudentpushesthetrolleyandthenreleasesitsothatitmovesuptheslope.Theforceoffrictiononthetrolleyis1·0N.
(i)Whydoesthetrolleycontinuetomoveuptheslopeafteritisreleased?
(ii)Calculatetheunbalancedforceonthetrolleyasitmovesuptheslope.
(iii)Calculatetherateatwhichthetrolleylosesspeedasitmovesuptheslope.
(b)Thetrolleyeventuallycomestorestthenstartstomovedowntheslope.
(i)Calculatetheunbalancedforceonthetrolleyasitmovesdowntheslope.
(ii)Calculatetheaccelerationofthetrolleydowntheslope.
Workdone,kineticandpotentialenergy
1.Asmallballofmass0·20kgisdroppedfromaheightof4·0mabovetheground.Theballreboundstoaheightof2·0m.
(a)Calculatetotallossinenergyoftheball.
(b)Calculatethespeedoftheballjustbeforeithitstheground.
(c)Calculatethespeedoftheballjustafteritleavestheground.
2.Aboxofmass70kgispulledalongahorizontalsurfacebyahorizontalforceof90N.Theboxispulledadistanceof12m.Thereisafrictionalforceof80Nbetweentheboxandthesurface.
(a)Calculatethetotalworkdonebythepullingforce.
(b)Calculatetheamountofkineticenergygainedbythebox.
3.Aboxofmass2·0kgispulledupafrictionlessslopeasshown.
(a)Calculatethegravitationalpotentialenergygainedbytheboxwhenitispulleduptheslope.
(b)Theblockisnowreleased.
(i)Useconservationofenergytofindthespeedoftheboxatthebottomoftheslope.
(ii)Useanothermethodtoconfirmyouranswerto(i).
4.Awinchdrivenbyamotorisusedtoliftacrateofmass50kgthroughaverticalheightof20m.
(a)Calculatethesizeoftheminimumforcerequiredtoliftthecrate.
(b)Calculatetheminimumamountofworkdonebythewinchwhileliftingthecrate.
(c)Thepowerofthewinchis2·5kW.Calculatetheminimumtimetakentoliftthecratetotherequiredheight.¶
5.Atrainhasaconstantspeedof10ms1overadistanceof2·0km.Thedrivingforceofthetrainengineis3·0×104N.
Whatisthepowerdevelopedbythetrainengine?
6.Anarrowofmass22ghasaspeedof30ms1asitstrikesatarget.Thetipofthearrowgoes3·0×102mintothetarget.
(a)Calculatetheaverageforceofthetargetonthearrow.
(b)Whatisthetimetakenforthearrowtocometorestafterstrikingthetarget,assumingthetargetexertsaconstantforceonthearrow?
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010
SECTION 3: COLLISIONS AND EXPLOSIONS
Section3:Collisionsandexplosions
1.Whatisthemomentumoftheobjectineachofthefollowingsituations?
(a)(b)(c)
2.Atrolleyofmass2·0kgistravellingwithaspeedof1·5ms1.Thetrolleycollidesandstickstoastationarytrolleyofmass2·0kg.
(a)Calculatethevelocityofthetrolleysimmediatelyafterthecollision.
(b)Showthatthecollisionisinelastic.
3.Atargetofmass4·0kghangsfromatreebyalongstring.Anarrowofmass100gisfiredatthetargetandembedsitselfinthetarget.Thespeedofthearrowis100ms1justbeforeitstrikesthetarget.Whatisthespeedofthetargetimmediatelyaftertheimpact?
4.Atrolleyofmass2·0kgismovingataconstantspeedwhenitcollidesandstickstoasecondstationarytrolley.Thegraphshowshowthespeedofthe2·0kgtrolleyvarieswithtime.
Determinethemassofthesecondtrolley.
5.Inagameofbowlsabowlofmass1·0kgistravellingataspeedof2·0ms1whenithitsastationaryjack‘straighton’.Thejackhasamassof300g.Thebowlcontinuestomovestraightonwithaspeedof1·2ms1afterthecollision.
(a)Whatisthespeedofthejackimmediatelyafterthecollision?
(b)Howmuchkineticenergyislostduringthecollision?
6.Twospacevehiclesmakeadockingmanoeuvre(joiningtogether)inspace.Onevehiclehasamassof2000kgandistravellingat9·0ms1.Thesecondvehiclehasamassof1500kgandismovingat8·0ms1inthesamedirectionasthefirst.Determinetheircommonvelocityafterdocking.
7.Twocarsaretravellingalongaracetrack.Thecarinfronthasamassof1400kgandismovingat20ms1.Thecarbehindhasamassof1000kgandismovingat30ms1.Thecarscollideandasaresultofthecollisionthecarinfronthasaspeedof25ms1.
(a)Determinethespeedoftherearcarafterthecollision.
(b)Showclearlywhetherthiscollisioniselasticorinelastic.
8.Onevehicleapproachesanotherfrombehindasshown.
Thevehicleattherearismovingfasterthantheoneinfrontandtheycollide.Thiscausesthevehicleinfronttobe‘nudged’forwardwithanincreasedspeed.Determinethespeedoftherearvehicleimmediatelyafterthecollision.
9.Atrolleyofmass0·8kgistravellingataspeed1·5ms1.Itcollideshead-onwithanothervehicleofmass1·2kgtravellingat2·0ms1intheoppositedirection.Thevehicleslocktogetheronimpact.Determinethespeedanddirectionofthevehiclesafterthecollision.
10.Afireworkislaunchedverticallyandwhenitreachesitsmaximumheightitexplodesintotwopieces.Onepiecehasamassof200gandmovesoffwithaspeedof10ms1.Theotherpiecehasamassof
120g.Whatisthevelocityofthesecondpieceofthefirework?
11.Twotrolleysinitiallyatrestandincontactmoveapartwhenaplungerononetrolleyisreleased.Onetrolleywithamassof2kgmovesoffwithaspeedof4ms1.Theothermovesoffwithaspeedof2ms1,intheoppositedirection.Calculatethemassofthistrolley.
12.Amanofmass80kgandwomanofmass50kgareskatingonice.Atonepointtheystandnexttoeachotherandthewomanpushestheman.Asaresultofthepushthemanmovesoffataspeedof0·5ms1.Whatisthevelocityofthewomanasaresultofthepush?
13.Twotrolleysinitiallyatrestandincontactflyapartwhenaplungerononeofthemisreleased.Onetrolleyhasamassof2·0kgandmovesoffataspeedof2·0ms1.Thesecondtrolleyhasamassof3·0kg.Calculatethevelocityofthistrolley.
14.Acueexertsanaverageforceof7·00Nonastationarysnookerballofmass200g.Theimpactofthecueontheballlastsfor45·0ms.Whatisthespeedoftheballasitleavesthecue?
15Afootballofmass500gisstationary.Whenagirlkickstheballherfootisincontactwiththeballforatimeof50ms.Asaresultofthekicktheballmovesoffataspeedof10ms1.Calculatetheaverageforceexertedbyherfootontheball.
16.Astationarygolfballofmass100gisstruckbyaclub.Theballmovesoffataspeedof30ms1.Theaverageforceoftheclubontheballis100N.Calculatethetimeofcontactbetweentheclubandtheball.
17.Thegraphshowshowtheforceexertedbyahockeystickonastationaryhockeyballvarieswithtime.
Themassoftheballis150g.
Determinethespeedoftheballasitleavesthestick.
18.Aballofmass100gfallsfromaheightof0·20montoconcrete.Theballreboundstoaheightof0·18m.Thedurationoftheimpactis
25ms.Calculate:
(a)thechangeinmomentumoftheballcausedbythe‘bounce’
(b)theimpulseontheballduringthebounce
(c)theaverageunbalancedforceexertedontheballbytheconcrete
(d)theaverageunbalancedforceoftheconcreteontheball.
(e)Whatisinthetotalaverageupwardsforceontheballduringimpact?
19.Arubberballofmass40·0gisdroppedfromaheightof0·800montothepavement.Theballreboundstoaheightof0·450m.Theaverageforceofcontactbetweenthepavementandtheballis2·80N.
(a)Calculatethevelocityoftheballjustbeforeithitsthegroundandthevelocityjustafterhittingtheground.
(b)Calculatethetimeofcontactbetweentheballandpavement.
20.Aballofmass400gtravelsfallsfromrestandhitstheground.Thevelocity-timegraphrepresentsthemotionoftheballforthefirst1·2safteritstartstofall.
(a)DescribethemotionoftheballduringsectionsAB,BC,CDandDEonthegraph.
(b)Whatisthetimeofcontactoftheballwiththeground?
(c)Calculatetheaverageunbalancedforceofthegroundontheball.
(d)Howmuchenergyislostduetocontactwiththeground?
21.Waterwithaspeedof50ms1isejectedhorizontallyfromafirehoseatarateof25kgs1.Thewaterhitsawallhorizontallyanddoesnotreboundfromthewall.Calculatetheaverageforceexertedonthewallbythewater.
22.Arocketejectsgasatarateof50kgs1,ejectingitwithaconstantspeedof1800ms1.Calculatemagnitudeoftheforceexertedbytheejectedgasontherocket.
23.Describeindetailanexperimentthatyouwoulddotodeterminetheaverageforcebetweenafootballbootandafootballastheballisbeingkicked.Drawadiagramoftheapparatusandincludeallthemeasurementstakenanddetailsofthecalculationscarriedout.
24.A2·0kgtrolleytravellingat6·0ms1collideswithastationary1·0kgtrolley.Thetrolleysremainconnectedafterthecollision.
(a)Calculate:
(i)thevelocityofthetrolleysjustafterthecollision
(ii)themomentumgainedbythe1·0kgtrolley
(iii)themomentumlostbythe2·0kgtrolley.
(b)Thecollisionlastsfor0·50s.Calculatethemagnitudeoftheaverageforceactingoneachtrolley.
25.Inaproblemtwoobjects,havingknownmassesandvelocities,collideandsticktogether.Whydoestheproblemaskforthevelocityimmediatelyaftercollisiontobecalculated?
26.ANewton’scradleapparatusisusedtodemonstrateconservationofmomentum.
Foursteelspheres,eachofmass0.1kg,aresuspendedsothattheyareinastraightline.
Sphere1ispulledtothesideandreleased,asshownindiagramI.
Whensphere1strikessphere2(asshownbythedottedlines)thensphere4movesoffthelineandreachesthepositionshownbythedottedlines.
Thestudentestimatesthatsphere1hasaspeedof2ms1whenitstrikessphere2.Shealsoestimatesthatsphere4leavesthelinewithaninitialspeedof2ms1.Henceconservationofmomentumhasbeendemonstrated.
Asecondstudentsuggeststhatwhenthedemonstrationisrepeatedthereisapossibilitythatspheres3and4,eachwithaspeedof
0·5ms1,couldmoveoffthelineasshownindiagramII.
Useyourknowledgeofphysicstoshowthisisnotpossible.
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010
SECTION 4: GRAVITATION
Section4:Gravitation
Projectiles
1.Aplaneistravellingwithahorizontalvelocityof350ms1ataheightof300m.Aboxisdroppedfromtheplane.
Theeffectsoffrictioncanbeignored.
(a)Calculatethetimetakenfortheboxtoreachtheground.
(b)Calculatethehorizontaldistancebetweenthepointwheretheboxisdroppedandthepointwhereithitstheground.
(c)Whatisthepositionoftheplanerelativetotheboxwhentheboxhitstheground?
2.Aprojectileisfiredhorizontallywithaspeedof12·0ms1fromtheedgeofacliff.Theprojectilehitstheseaatapoint60·0mfromthebaseofthecliff.
(a)Calculatethetimeofflightoftheprojectile.
(b)Whatistheheightofthestartingpointoftheprojectileabovesealevel?
Stateanyassumptionsyouhavemade.
3.Aballisthrownhorizontallywithaspeedof15ms1fromthetopofaverticalcliff.Itreachesthehorizontalgroundatadistanceof45mfromthefootofthecliff.
(a)(i)Drawagraphofverticalspeedagainsttimefortheballforthetimefromwhenitisthrownuntilithitstheground.
(ii)Drawagraphofhorizontalspeedagainsttimefortheball.
(b)Calculatethevelocityoftheball2safteritisthrown.
(Magnitudeanddirectionarerequired.)
4.Afootballiskickedupatanangleof70º above the horizontalat
15ms1.Calculate:
(a)thehorizontalcomponentofthevelocity
(b)theverticalcomponentofthevelocity.
5.Aprojectileisfiredacrosslevelgroundandtakes6stotravelfromAtoB.
ThehighestpointreachedisC.Airresistanceisnegligible.
Velocity-timegraphsfortheflightareshownbelow.VHisthehorizontalvelocityandVVistheverticalvelocity.
(a)Describe:
(i)thehorizontalmotionoftheprojectile
(ii)theverticalmotionoftheprojectile.
(b)UseavectordiagramtofindthespeedandangleatwhichtheprojectilewasfiredfrompointA.
(c)FindthespeedatpositionC.Explainwhythisisthesmallestspeedoftheprojectile.
(d)CalculatetheheightabovethegroundofpointC.
(e)Findthehorizontalrangeoftheprojectile.
6.Aballofmass5·0kgisthrownwithavelocityof40ms1atanangleof30ºtothehorizontal.
Calculate:
(a)theverticalcomponentoftheinitialvelocityoftheball
(b)themaximumverticalheightreachedbythebal
(c)thetimeofflightforthewholetrajectory
(d)thehorizontalrangeoftheball.
7.Alauncherisusedtofireaballwithavelocityof100ms1atanangleof60ºtotheground.Theballstrikesatargetonahillasshown.
(a)Calculatethetimetakenfortheballtoreachthetarget.
(b)Whatistheheightofthetargetabovethelauncher?
8.Astuntdriverattemptstojumpacrossacanalofwidth10m.
Theverticaldroptotheothersideis2masshown.
(a)Calculatetheminimumhorizontalspeedrequiredsothatthecarreachestheotherside.
(b)Explainwhyyouranswerto(a)istheminimumhorizontalspeedrequired.
(c)Stateanyassumptionsyouhavemade.
9.Aballisthrownhorizontallyfromacliff.Theeffectoffrictioncanbeignored.
(a)Isthereanytimewhenthevelocityoftheballisparalleltoitsacceleration?Justifyyouranswer.
(b)Isthereanytimewhenthevelocityoftheballisperpendiculartoitsacceleration?Justifyyouranswer.
10.Aballisthrownatanangleof45ºtothehorizontal.Theeffectoffrictioncanbeignored.
(a)Isthereanytimewhenthevelocityoftheballisparalleltoitsacceleration?Justifyyouranswer.
(b)Isthereanytimewhenthevelocityoftheballisperpendiculartoitsacceleration?Justifyyouranswer.
11.Asmallballofmass0·3kgisprojectedatanangleof60ºtothehorizontal.Theinitialspeedoftheballis20ms1.
Showthatthemaximumgaininpotentialenergyoftheballis45J.
12.Aballisthrownhorizontallywithaspeedof20ms1fromacliff.Theeffectsofairresistancecanbeignored.Howlongafterbeingthrownwillthevelocityoftheballbeatanangleof45ºtothehorizontal?
Gravityandmass
Inthefollowingquestions,whenrequired,usethefollowingdata:
Gravitationalconstant=6·67×1011Nm2kg2
1.Statetheinversesquarelawofgravitation.
2.Showthattheforceofattractionbetweentwolargeships,eachofmass5·00×107kgandseparatedbyadistanceof20m,is417N.
3.Calculatethegravitationalforcebetweentwocarsparked0·50mapart.Themassofeachcaris1000kg.
4.Inahydrogenatomanelectronorbitsaprotonwitharadiusof5·30×1011m.Themassofanelectronis9·11×1031kgandthemassofaprotonis1·67×1027kg.Calculatethegravitationalforceofattractionbetweentheprotonandtheelectroninahydrogenatom.
5.ThedistancebetweentheEarthandtheSunis1·50×1011m.ThemassoftheEarthis5·98×1024kgandthemassoftheSunis1·99×1030kg.CalculatethegravitationalforcebetweentheEarthandtheSun.
6.Twoprotonsexertagravitationalforceof1·16×1035Noneachother.Themassofaprotonis1·67×1027kg.Calculatethedistanceseparatingtheprotons.
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010
SECTION 5: SPECIAL RELATIVITY
Section5:Specialrelativity
Relativity–Fundamentalprinciples
1.Ariverflowsataconstantspeedof0·5ms1south.Acanoeistisabletorowataconstantspeedof1·5ms1.
(a)Determinethevelocityofthecanoeistrelativetotheriverbankwhenthecanoeistismovingupstream.
(b)Determinethevelocityofthecanoeistrelativetotheriverbankwhenthecanoeistismovingdownstream.
2.Inanairport,passengersuseamovingwalkway.Themovingwalkwayistravellingataconstantspeedof0·8ms1andistravellingeast.
Forthefollowingpeople,determinethevelocityofthepersonrelativetotheground:
(a)awomanstandingatrestonthewalkway
(b)amanwalkingat2·0ms1inthesamedirectionasthewalkwayismoving
(c)aboyrunningwestat3·0ms1.
3.Thestepsofanescalatormoveatasteadyspeedof1·0ms1relativetothestationarysideoftheescalator.
(a)Amanwalksupthestepsoftheescalatorat2·0ms1.Determinethespeedofthemanrelativetothesideoftheescalator.
(b)Aboyrunsdownthestepsoftheescalatorat3·0ms1.Determinethespeedoftheboyrelativetothesideoftheescalator.
4.InthefollowingsentencesthewordsrepresentedbythelettersA,B,C,D,E,FandGaremissing:
In_____A____TheoryofSpecialRelativitythelawsofphysicsarethe_____B____forallobservers,atrestormovingatconstantvelocitywithrespecttoeachotherie_____C____acceleration.Anobserver,atrestormovingatconstant_____D____hastheirownframeofreference.
Inallframesofreferencethe_____E____,c,remainsthesameregardlessofwhetherthesourceorobserverisinmotion.
Einstein’sprinciplesthatthelawsofphysicsandthespeedoflightarethesameforallobserversleadstotheconclusionthatmovingclocksrun_____F____(timedilation)andmovingobjectsare_____G____(lengthcontraction).
Matcheachletterwiththecorrectwordfromthelistbelow:
accelerationdifferentEinstein’sfast
lengthenedNewton’ssameshortened
slowspeedoflightvelocityzero
5.AnobserveratrestontheEarthseesanaeroplaneflyoverheadataconstantspeedof2000kmh1.Atwhatspeed,inkmh1,doesthepilotoftheaeroplaneseetheEarthmoving?
6.Ascientistisinawindowlesslift.Canthescientistdeterminewhethertheliftismovingwitha:
(a)uniformvelocity
(b)uniformacceleration?
7.SpaceshipAismovingataspeedof2·4×108ms1.Itsendsoutalightbeamintheforwardsdirection.MeanwhileanotherspaceshipBismovingtowardsspaceshipAataspeedof2·4×108ms1.AtwhatspeeddoesspaceshipBseethelightbeamfromspaceshipApass?
8.Aspacecraftistravellingataconstantspeedof7·5×107ms1.Itemitsapulseoflightwhenitis3·0×1010mfromtheEarthasmeasuredbyanobserverontheEarth.
CalculatethetimetakenforthepulseoflighttoreachtheEarthaccordingtoaclockontheEarthwhenthespacecraftismoving:
(a)awayfromtheEarth
(b)towardstheEarth.
9.AspaceshipistravellingawayfromtheEarthataconstantspeedof
1·5×108ms1.AlightpulseisemittedbyalampontheEarthandtravelstowardsthespaceship.Findthespeedofthelightpulseaccordingtoanobserveron:
(a)theEarth
(b)thespaceship.
10.Convertthefollowingfractionofthespeedoflightintoavaluein
ms1:
(a)0·1c
(b)0·5c
(c)0·6c
(d)0·8c
11.Convertthefollowingspeedsintoafractionofthespeedoflight:
(a)3·0×108ms1
(b)2·0×108ms1
(c)1·5×108ms1
(d)1·0×108ms1
Relativity–Timedilation
1.Writedowntherelationshipinvolvingthepropertimetanddilatedtimet’betweentwoeventswhichareobservedintwodifferentframesofreferencemovingataspeed,v,relativetooneanother(wherethepropertimeisthetimemeasuredbyanobserveratrestwithrespecttothetwoeventsandthedilatedtimeisthetimemeasuredbyanotherobservermovingataspeed,v,relativetothetwoevents).
2.Inthetableshown,usetherelativityequationfortimedilationtocalculatethevalueofeachmissingquantity(a)to(f)foranobjectmovingataconstantspeedrelativetotheEarth.
Dilatedtime / Propertime / Speedofobject/m s1(a) / 20h / 1·00×108
(b) / 10year / 2·25×108
1400s / (c) / 2·00×108
1.40×104s / (d) / 1·00×108
84s / 60s / (e)
21minutes / 20minutes / (f)
3.TwoobserversPandQsynchronisetheirwatchesat11.00amjustasobserverQpassestheEarthataspeedof2×108ms1.
(a)At11.15amaccordingtoobserverP’swatch,observerPlooksatQ’swatchthroughatelescope.Calculatethetime,tothenearestminute,thatobserverPseesonQ’swatch.
(b)At11.15amaccordingtoobserverQ’swatch,observerQlooksatP’swatchthroughatelescope.Calculatethetime,tothenearestminute,thatobserverQseesonP’swatch.
4.Thelifetimeofastaris10billionyearsasmeasuredbyanobserveratrestwithrespecttothestar.ThestarismovingawayfromtheEarthataspeedof0·81c.
CalculatethelifetimeofthestaraccordingtoanobserverontheEarth.
5.Aspacecraftmovingwithaconstantspeedof0·75cpassestheEarth.AnastronautonthespacecraftmeasuresthetimetakenforUsainBolttorun100minthesprintfinalatthe2008OlympicGames.Theastronautmeasuresthistimetobe14·65s.CalculateUsainBolt’swinningtimeasmeasuredontheEarth.
6.Ascientistinthelaboratorymeasuresthetimetakenforanuclearreactiontooccurinanatom.Whentheatomistravellingat
8·0×107ms1thereactiontakes4·0×104s.Calculatethetimeforthereactiontooccurwhentheatomisatrest.
7.Thelightbeamfromalighthousesweepsitsbeamoflightaroundinacircleonceevery10s.ToanastronautonaspacecraftmovingtowardstheEarth,thebeamoflightcompletesonecompletecircleevery14s.CalculatethespeedofthespacecraftrelativetotheEarth.
8.ArocketpassestwobeaconsthatareatrestrelativetotheEarth.Anastronautintherocketmeasuresthetimetakenfortherockettotravelfromthefirstbeacontothesecondbeacontobe10·0s.AnobserveronEarthmeasuresthetimetakenfortherockettotravelfromthefirstbeacontothesecondbeacontobe40·0s.CalculatethespeedoftherocketrelativetotheEarth.
9.AspacecrafttravelstoadistantplanetataconstantspeedrelativetotheEarth.Aclockonthespacecraftrecordsatimeof1yearforthejourneywhileanobserveronEarthmeasuresatimeof2yearsforthejourney.Calculatethespeed,inms1,ofthespacecraftrelativetotheEarth.
Relativity–Lengthcontraction
1.Writedowntherelationshipinvolvingtheproperlengthlandcontractedlengthl’ofamovingobjectobservedintwodifferentframesofreferencemovingataspeed,v,relativetooneanother(wheretheproperlengthisthelengthmeasuredbyanobserveratrestwithrespecttotheobjectandthecontractedlengthisthelengthmeasuredbyanotherobservermovingataspeed,v,relativetotheobject).
2.Inthetableshown,usetherelativityequationforlengthcontractiontocalculatethevalueofeachmissingquantity(a)to(f)foranobjectmovingataconstantspeedrelativetotheEarth.
Contractedlength / Properlength / Speedofobject/m s1(a) / 5·00m / 1·00×108
(b) / 15.0m / 2·00×108
0·15km / (c) / 2·25×108
150mm / (d) / 1·04×108
30m / 35m / (e)
10m / 11m / (f)
3.Arockethasalengthof20mwhenatrestontheEarth.Anobserver,atrestontheEarth,watchestherocketasitpassesataconstantspeedof1·8×108ms1.Calculatethelengthoftherocketasmeasuredbytheobserver.
4.Apimesonismovingat0·90crelativetoamagnet.Themagnethasalengthof2·00mwhenatresttotheEarth.Calculatethelengthofthemagnetin the reference frame ofthepimeson.
5.Intheyear2050aspacecraftfliesoverabasestationontheEarth.Thespacecrafthasaspeedof0·8c.Thelengthofthemovingspacecraftismeasuredas160mbyapersonontheEarth.Thespacecraftlaterlandsandthesamepersonmeasuresthelengthofthenowstationaryspacecraft.Calculatethelengthofthestationaryspacecraft.
6.Arocketistravellingat0·50crelativetoaspacestation.Astronautsontherocketmeasurethelengthofthespacestationtobe0.80km.
Calculatethelengthofthespacestation according to a technician on the space station.
7.Ametrestickhasalengthof1·00mwhenatrestontheEarth.WheninmotionrelativetoanobserverontheEarththesamemetrestickhasalengthof0·50m.Calculatethespeed,inms1,ofthemetrestick.
8.Aspaceshiphasalengthof220mwhenmeasuredatrestontheEarth.ThespaceshipmovesawayfromtheEarthataconstantspeedandanobserver,ontheEarth,nowmeasuresitslengthtobe150m.
Calculatethespeedofthespaceshipinms1.
9.Thelengthofarocketismeasuredwhenatrestandalsowhenmovingataconstantspeedbyanobserveratrestrelativetotherocket.Theobservedlengthis99·0%ofitslengthwhenatrest.Calculatethespeedoftherocket.
Relativityquestions
1.TwopointsAandBareseparatedby240masmeasuredbymetresticksatrestontheEarth.ArocketpassesalongthelineconnectingAandBataconstantspeed.ThetimetakenfortherockettotravelfromAtoB,asmeasuredbyanobserverontheEarth,is1·00×106s.
(a)ShowthatthespeedoftherocketrelativetotheEarthis
2·40×108ms1.
(b)WhatisthedistancebetweenpointsAandBasmeasuredbymetrestickscarriedbyanobservertravellingintherocket?
2.Aspacecraftistravellingataconstantspeedof0·95c.Thespacecrafttravelsatthisspeedfor1year,asmeasuredbyaclockontheEarth.
(a)Calculatethetimeelapsed,inyears,asmeasuredbyaclockinthespacecraft.
(b)Showthatthedistancetravelledbythespacecraftasmeasuredbyanobserveronthespacecraftis2·8×1015m.
(c)Calculatethedistance,inm,thespacecraftwillhavetravelledasmeasuredbyanobserverontheEarth.
3.Apimesonhasameanlifetimeof2·6×108swhenatrest.Apimesonmoveswithaspeedof0·99ctowardsthesurfaceoftheEarth.
(a)CalculatethemeanlifetimeofthispimesonasmeasuredbyanobserverontheEarth.
(b)CalculatethemeandistancetravelledbythepimesonasmeasuredbytheobserverontheEarth.
4.Aspacecraftmovingat2·4×108ms1passestheEarth.Anastronautonthespacecraftfindsthatittakes5·0×107sforthespacecrafttopassasmallmarkerwhichisatrestontheEarth.
(a)Calculatethelength,inm,ofthespacecraftasmeasuredbytheastronaut.
(b)CalculatethelengthofthespacecraftasmeasuredbyanobserveratrestontheEarth.
5.Aneonsignflasheswithafrequencyof0·2Hz.
(a)Calculatethetimebetweenflashes.
(b)AnastronautonaspacecraftpassestheEarthataspeedof0·84candseestheneonlightflashing.Calculatethetimebetweenflashesasobservedbytheastronautonthespacecraft.
6.Whenatrest,asubatomicparticlehasalifetimeof0·15ns.WheninmotionrelativetotheEarththeparticle’slifetimeismeasuredbyanobserverontheEarthas0·25ns.Calculatethespeedoftheparticle.
7.Amesonis10·0kmabovetheEarth’ssurfaceandismovingtowardstheEarthataspeedof0·999c.
(a)Calculatethedistance,accordingtothemeson,travelledbeforeitstrikestheEarth.
(b)Calculatethetimetaken,accordingtothemeson,forittotraveltothesurfaceoftheEarth.
8.The star AlphaCentauriis4·2lightyearsawayfromtheEarth.AspacecraftissentfromtheEarthtoAlphaCentauri.Thedistancetravelled,asmeasuredbythespacecraft,is3·6lightyears.
(a)CalculatethespeedofthespacecraftrelativetotheEarth.
(b)Calculatethetimetaken,inseconds,forthespacecrafttoreachAlphaCentauriasmeasuredbyanobserverontheEarth.
(c)Calculatethetimetaken,inseconds,forthespacecrafttoreachAlphaCentauriasmeasuredbyaclockonthespacecraft.
9.Muons,whenatrest,haveameanlifetimeof2·60×108s.Muonsareproduced10kmabovetheEarth.Theymovewithaspeedof0·995ctowardsthesurfaceoftheEarth.
(a)CalculatethemeanlifetimeofthemovingmuonsasmeasuredbyanobserverontheEarth.
(b)CalculatethemeandistancetravelledbythemuonsasmeasuredbyanobserverontheEarth.
(c)Calculatethemeandistancetravelledbythemuonsasmeasuredbythemuons.
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010
SECTION 6: THE EXPANDING UNIVERSE
Section6:Theexpandinguniverse
TheDopplereffectandredshiftofgalaxies
Inthefollowingquestions,whenrequired,usetheapproximationforspeedofsoundinair=340ms1.
1.InthefollowingsentencesthewordsrepresentedbythelettersA,B,CandDaremissing:
Amovingsourceemitsasoundwithfrequencyfs.Whenthesourceismovingtowardsastationaryobserver,theobserverhearsa____A_____frequencyfo.Whenthesourceismovingawayfromastationaryobserver,theobserverhearsa____B_____frequencyfo.Thisisknownasthe_____C______D_____.
Matcheachletterwiththecorrectwordfromthelistbelow:
Dopplereffecthigherlouderlower
quietersofter
2.Writedowntheexpressionfortheobservedfrequencyfo,detectedwhenasourceofsoundwavesinairoffrequencyfsmoves:
(a)towardsastationaryobserverataconstantspeed,vs
(b)awayfromastationaryobserverataconstantspeed,vs.
3.Inthetableshown,calculatethevalueofeachmissingquantity(a)to(f),forasourceofsoundmovinginairrelativetoastationaryobserver.
Frequencyheardbystationaryobserver/Hz / Frequencyofsource/Hz / Speedofsourcemovingtowardsobserver/m s1 / Speedofsourcemovingawayfromobserver/m s1(a) / 400 / 10 / –
(b) / 400 / – / 10
850 / (c) / 20 / –
1020 / (d) / – / 5
2125 / 2000 / (e) / –
170 / 200 / – / (f)
4.AgirltriesoutanexperimenttoillustratetheDopplereffectbyspinningabattery-operatedsirenaroundherhead.Thesirenemitssoundwaveswithafrequencyof1200Hz.
Describewhatwouldbeheardbyastationaryobserverstandingafewmetresaway.
5.Apolicecaremitssoundwaveswithafrequencyof1000Hzfromitssiren.Thecaristravellingat20ms1.
(a)Calculatethefrequencyheardbyastationaryobserverasthepolicecarmovestowardsher.
(b)Calculatethefrequencyheardbythesameobserverasthepolicecarmovesawayfromher.
6.Astudentisstandingonastationplatform.Atrainapproachingthestationsoundsitshornasitpassesthroughthestation.Thetrainistravellingataspeedof25ms1.Thehornhasafrequencyof200Hz.
(a)Calculatethefrequencyheardasthetrainisapproachingthestudent.
(b)Calculatethefrequencyheardasthetrainismovingawayfromthestudent.
7.Amanstandingatthesideoftheroadhearsthehornofanapproachingcar.Hehearsafrequencyof470Hz.Thehornonthecarhasafrequencyof450Hz.
Calculatethespeedofthecar.
8.Asourceofsoundemitswavesoffrequency500Hz.Thisisdetectedas540Hzbyastationaryobserverasthesourceofsoundapproaches.
Calculatethefrequencyofthesounddetectedasthesourcemovesawayfromthestationaryobserver.
9.Awhistleoffrequency540vibrationspersecondrotatesinacircleofradius0·75mwithaspeedof10ms1.Calculatethelowestandhighestfrequencyheardbyalistenersomedistanceawayatrestwithrespecttothecentreofthecircle.
10.Awomanisstandingatthesideofaroad.Alorry,movingat20ms1,soundsitshornasitispassingher.Thelorryismovingat20ms1andthehornhasafrequencyof300Hz.
(a)Calculatethewavelengthheardbythewomanwhenthelorryisapproachingher.
(b)Calculatethewavelengthheardbythewomanwhenthelorryismovingawayfromher.
11.Asirenemittingasoundoffrequency1000vibrationspersecondmovesawayfromyoutowardsthe base of a verticalcliffataspeedof10ms1.
(a)Calculatethefrequencyofthesoundyouhearcomingdirectlyfromthesiren.
(b)Calculatethefrequencyofthesoundyouhearreflectedfromthecliff.
12.Asoundsourcemovesawayfromastationarylistener.Thelistenerhearsafrequencythatis10%lowerthanthesourcefrequency.
Calculatethespeedofthesource.
13.Abatfliestowardsatreeataspeedof3·60ms1whileemittingsoundoffrequency350kHz.Amothisrestingonthetreedirectlyinfrontofthebat.
(a)Calculatethefrequencyofsoundheardbythebat.
(b)Thebatdecreasesitsspeedtowardsthetree.Doesthefrequencyofsoundheardbythemothincrease,decreaseorstaysthesame?Justifyyouranswer.
(c)Thebatnowfliesdirectlyawayfromthetreewithaspeedof
4·50ms1whileemittingthesamefrequencyofsound.
Calculatethenewfrequencyofsoundheardbythemoth.
14.Thesirenonapolicecarhasafrequencyof1500Hz.Thepolicecarismovingataconstantspeedof54kmh1.
(a)Showthatthepolicecarismovingat15ms1.
(b)Calculatethefrequencyheardwhenthecarismovingtowardsastationaryobserver.
(c)Calculatethefrequencyheardwhenthecarismovingawayfromastationaryobserver.
15.Asourceofsoundemitsasignalat600Hz.Thisisobservedas640Hzbyastationaryobserverasthesourceapproaches.
Calculatethespeedofthemovingsource.
16.Abattery-operatedsirenemitsaconstantnoteof2200Hz.Itisrotatedinacircleofradius0·8mat3·0revolutionspersecond.Astationaryobserver,standingsomedistanceaway,listenstothenotemadebythesiren.
(a)Showthatthesirenhasaconstantspeedof15·1ms1.
(b)Calculatetheminimumfrequencyheardbytheobserver.
(c)Calculatethemaximumfrequencyheardbytheobserver.
17.Youarestandingatthesideoftheroad.Anambulanceapproachesyouwithitssirenon.Astheambulanceapproaches,youhearafrequencyof460Hzandastheambulancemovesawayfromyou,afrequencyof
410Hz.Thenearesthospitalis3kmfromwhereyouarestanding.
Estimatethetimefortheambulancetoreachthehospital.Assumethattheambulancemaintainsaconstantspeedduringitsjourneytothehospital.
18.OntheplanetLts,anattramovestowardsastationaryndoat10ms1.Thenattraemitssoundwavesoffrequency1100Hz.Thestationaryndohearsafrequencyof1200Hz.
CalculatethespeedofsoundontheplanetLts.
19.InthefollowingsentencesthewordsrepresentedbythelettersA,B,C,DandEaremissing:
Ahydrogensourceoflightgivesoutanumberofemissionlines.Thewavelengthofoneoftheselinesismeasured.WhenthelightsourceisontheEarth,andatrest,thevalueofthiswavelengthisrest.Whenthesamehydrogenemissionlineisobserved,ontheEarth,inlightcomingfromadistantstarthevalueofthewavelengthisobserved.WhenastarismovingawayfromtheEarthobservedis____A_____thanrest.Thisisknownasthe____B_____shift.
WhenthedistantstarismovingtowardstheEarthobservedis____C_____thanrest.Thisisknownasthe____D_____shift.
Measurementsonmanystarsindicatethatmoststarsaremoving____E_____fromtheEarth.
Matcheachletterwiththecorrectwordfromthelistbelow:
awaybluelongerredshortertowards.
20.Inthetableshown,calculatethevalueofeachmissingquantity.
Fractionalchangeinwavelength,z / WavelengthoflightonEarthrest/nm / Wavelengthoflightobservedfromstar,observed/nm(a) / 365 / 402
(b) / 434 / 456
8·00×102 / 486 / (c)
4·00×102 / 656 / (d)
5·00×102 / (e) / 456
1·00×101 / (f) / 402
Hubble’slaw
Inthefollowingquestions,whenrequired,usetheapproximationfor
Ho=2·4×1018s1
1.Convertthefollowingdistancesinlightyearsintodistancesinmetres.
(a)1lightyear
(b)50lightyears
(c)100,000lightyears
(d)16,000,000,000lightyears
2.Convertthefollowingdistancesinmetresintodistancesinlightyears.
(a)ApproximatedistancefromtheEarthtoourSun=1·44×1011m.
(b)ApproximatedistancefromtheEarthtonextneareststarAlphaCentauri=3.97×1016m.
(c)ApproximatedistancefromtheEarthtoagalaxyintheconstellationofVirgo=4·91×1023m.
3.Inthetableshown,calculatethevalueofeachmissingquantity.
SpeedofgalaxyrelativetoEarth/m s1 / ApproximatedistancefromEarthtogalaxy/m / Fractionalchangeinwavelength,z(a) / 7.10×1022 / (b)
(c) / 1.89×1024 / (d)
1·70×106 / (e) / (f)
2·21×106 / (g) / (h)
4.Lightfromadistantgalaxyisfoundtocontainthespectrallinesofhydrogen.Thelightcausingoneoftheselineshasameasuredwavelengthof466nm.WhenthesamelineisobservedfromahydrogensourceonEarthithasawavelengthof434nm.
(a)CalculatetheDopplershift,z,forthisgalaxy.
(b)CalculatethespeedatwhichthegalaxyismovingrelativetotheEarth.
(c)Inwhichdirection,towardsorawayfromtheEarth,isthegalaxymoving?
5.Lightofwavelength505nmformsalineinthespectrumofanelementonEarth.ThesamespectrumfromlightfromagalaxyinUrsaMajorshowsthislineshiftedtocorrespondtolightofwavelength530nm.
(a)CalculatethespeedthatthegalaxyismovingrelativetotheEarth.
(b)Calculatetheapproximatedistance,inmetres,thegalaxyisfromtheEarth.
6.AgalaxyismovingawayfromtheEarthataspeedof0·074c.
(a)Convert0·074cintoaspeedinms1.
(b)Calculatetheapproximatedistance,inmetres,ofthegalaxyfromtheEarth.
7.AdistantstaristravellingdirectlyawayfromtheEarthataspeedof2·4×107ms1.
(a)Calculatethevalueofzforthisstar.
(b)Ahydrogenlineinthespectrumoflightfromthisstarismeasuredtobe443nm.CalculatethewavelengthofthislinewhenitobservedfromahydrogensourceontheEarth.
8.Alineinthespectrumfromahydrogenatomhasawavelengthof489nmontheEarth.Thesamelineisobservedinthespectrumofadistantstarbutwithalongerwavelengthof538nm.
(a)Calculatethespeed,inms1,atwhichthestarismovingawayfromtheEarth.
(b)Calculatetheapproximatedistance,inmetresandinlightyears,ofthestarfromtheEarth.
9.ThegalaxyCoronaBorealisisapproximately1000millionlightyearsawayfromtheEarth.CalculatethespeedatwhichCoronaBorealisismovingawayfromtheEarth.
10.AgalaxyismovingawayfromtheEarthataspeedof3·0×107ms1.Thefrequencyofanemissionlinecomingfromthegalaxyismeasured.Thelightformingthesameemissionline,fromasourceonEarth,isobservedtohaveafrequencyof5·00×1014Hz.
(a)ShowthatthewavelengthofthelightcorrespondingtotheemissionlinefromthesourceontheEarthis6·00×107m.
(b)Calculatethefrequencyofthelightformingtheemissionlinecomingfromthegalaxy.
11.AdistantquasarismovingawayfromtheEarth.Hydrogenlinesareobservedcomingfromthisquasar.Oneoftheselinesismeasuredtobe20nmlongerthanthesameline,ofwavelength486nmfromasourceonEarth.
(a)CalculatethespeedatwhichthequasarismovingawayfromtheEarth.
(b)Calculatetheapproximatedistance,inmillionsoflightyears,thatthequasarisfromtheEarth.
12.Ahydrogensource,whenviewedontheEarth,emitsaredemissionlineofwavelength656nm.Observations,forthesamelineinthespectrumoflightfromadistantstar,giveawavelengthof660nm.CalculatethespeedofthestarrelativetotheEarth.
13.DuetotherotationoftheSun,lightwavesreceivedfromoppositeendsofadiameterontheSunshowequalbutoppositeDopplershifts.TherelativespeedofrotationofapointontheendofadiameteroftheSunrelativetotheEarthis2kms1.Calculatethewavelengthshiftforahydrogenlineofwavelength486·1nmontheEarth.
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010
SECTION 7: BIG BANG THEORY
Section7:BigBangtheory
1.Thegraphsbelowareobtainedbymeasuringtheenergyemittedatdifferentwavelengthsfromanobjectatdifferenttemperatures.
(a)Whichpartofthex-axis,PorQ,correspondstoultravioletradiation?
(b)Whatdothegraphsshowhappenstotheamountofenergyemittedatacertainwavelengthasthetemperatureoftheobjectincreases?
(c)Whatdothegraphsshowhappenstothetotalenergyradiatedbytheobjectasitstemperatureincreases?
(d)Eachgraphshowsthatthereisawavelengthmaxatwhichthemaximumamountofenergyisemitted.
(i)Explainwhythevalueofmaxdecreasesasthetemperatureoftheobjectincreases.
Thetableshowsthevaluesofmaxatdifferenttemperaturesoftheobject.
Temperature/K / max/m6000 / 4·8×107
5000 / 5·8×107
4000 / 73×107
3000 / 9·7×107
(ii)UsethisdatatodeterminetherelationshipbetweentemperatureTandmax.
(e)Useyouranswerto(d)(ii)tocalculate:
(i)thetemperatureofthestarSiriuswheremaxis2·7×107m
(ii)thevalueofmaxforthestarAlphaCruciswhichhasatemperatureof23,000K
(iii)thetemperatureofthepresentuniversewhenmaxforthecosmicmicrowaveradiationismeasuredas1·1×103m.
(iv)theapproximatewavelengthandtypeoftheradiationemittedbyyourskin,assumedtobeatatemperatureof33oC.
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010
SOLUTIONS
Solutions
Revisionproblems–Speed
2.6·8ms1
3.1·4×1011m
4.181minutes
5.(a)5ms1
(b)35m
(c)10ms1
(d)100m
(e)135m
6.750ms1
75s
8.2s¶
Revisionproblems–Acceleration
1.(a)2ms2
(b)6s
2.(a)2·0ms2
(b)24ms1
(c)6·0s
3.0·20ms2
Revisionproblems–Vectors
1.(a)80km
(b)40kmh1
(c)20kmnorth
(d)10kmh1north
2.(a)70m
(b)50mbearing037
(c)(i)70s
(ii)0·71 ms1bearing037
3.(a)6·8Nbearing077
(b)11·3Nbearing045
(c)6·4Nbearing129
5.Averagespeed=11kmh1
Averagevelocity=5kmh1bearing233
6.(a)5·1ms1
(b)14·1ms1
Section1:Equationsofmotion
Equationsofmotion
1.280m
2.51·2m
3.28ms1
4.16·7s
5.3·0s
6.(a)750ms2
(b)0·04s
7.9·5ms2orNkg1¶
8.(a)0·21ms2
(b)1·4s
9.234m
10.(a)(i)21·4m
(ii)15·6ms1downwards
(b)34·6m¶
Motion–timegraphs
1.(a)2ms1duenorth
(b)0ms1
(d)0·75ms1
2.(a)4ms1duenorth
(b)1·0ms1duesouth
(d)1·6ms1
(f)displacement2mduenorth,velocity4ms1duenorth
(g)displacement2mduenorth,velocity1ms1duesouth¶
3.(a)1ms1duenorth
(b)2ms1duesouth
(d)1ms1
(f)displacement0·5mduenorth,velocity 1ms1duenorth
(g)displacement0,velocity2ms1duesouth
4.(a)2ms2duenorth
(b)0ms2
(c)4mduenorth
(d)32mduenorth¶
5.(a)1ms2duenorth
(b)2ms2duesouth
(d)displacement3mduenorth,velocity 0ms1
(e)displacement2mduenorth,velocity 2ms1duesouth
6.(a)(i)17·5mduenorth
(ii)22·5mduenorth
(iii)17·5mduenorth
9.D.Notethatinthisquestion,downwardsistakentobethepositivedirectionforvectors.
10.A.Notethatinthisquestion,upwardsistakentobethepositivedirectionforvectors.
Section2:Forces,energyandpower
Balancedandunbalancedforces
2.4900N
3.(a)(i)1·5×102ms2
(ii)3·0×106N
(b)–2·7×103ms2
5.0·02ms2
6.150N¶
7.(a)120N
(b)20N¶
8.(a)1200N
(b)108m
(c)2592N
9.(a)(ii)7·7ms2
10.(a)1·78×103kg
(b)6·24×104N¶
11.2·86×104N
12.(a)1·96×103N
(b)2.26×103N
(c)1.96×103N
(d)1.66×103N¶
13.(a)(i)2·45×103N
(ii)2·45×103N
(iii)2·95×103N
(iv)1·95×103N
(b)4·2ms2¶
14.51·2N
15.(b)0·4sreading37·2N
4sto10sreading39·2N
10sto12sreading43·2N
16.(a)8ms2
(b)16N
17.(a)5·1×103N
(b)2·5×103N
(c)(i)700N
(ii)500N
(d)1·03×104N
18.24m
19.(a)(i)2ms2
(ii)40N
(iii)20N
(b)(i)12N¶
20.(a)3·27ms2
(b)6·54N
Resolutionofforces
1.(a)43·3N
2.353·6N
3.(a)8·7N
(b)43·5ms2
4.0·513ms2
5.(a)226N
(b)0·371ms2¶
6.9·8Nuptheslope
7.0·735N
8.(a)2283N
(b)2·2ms2
(c)14·8ms1
9.(a)(ii)18Ndowntheslope
(iii)9ms2downtheslope
(b)(i)16Ndowntheslope
(ii)8ms2downtheslope
Workdone,kineticandpotentialenergy
1.(a)3·92J
(b)8·9ms1
(c)6·3ms1¶
2.(a)1080J
(b)120J¶
3.(a)9·8J
(b)(i)3·1ms1
4.(a)490N
(b)9·8×103J
(c)3·9s¶
5.3·0×105W¶
6.(a)330N
(b)2·0×103s
Section3:Collisionsandexplosions
1.(a)20kgms1totheright
(b)500kgms1downwards
(c)9kgms1totheleft
2.(a)0·75ms1inthedirectioninwhichthefirsttrolleywasmoving
3.2·4ms1
4.3·0kg
5.(a)2·7ms1
(b)0·19J
6.8·6ms1intheoriginaldirectionoftravel
7.(a)23ms1
8.8·7ms1
9.0·6ms1intheoriginaldirectionoftravelofthe1·2kgtrolley¶
10.16·7ms1intheoppositedirectiontothefirstpiece
11.4kg
12.0·8ms1intheoppositedirectiontothevelocityoftheman¶
13.1·3ms1intheoppositedirectiontothevelocityofthefirsttrolley¶
14.1·58ms1
15.100N
16.3·0×102s
17.2·67ms1¶
18(a)+0·39kgms1ifyouhavechosenupwardsdirectionstobepositive; –0·39kgms1ifyouhavechosendownwardsdirectionstobepositive
(b)+0·39Nsifyouhavechosenupwardsdirectionstobepositive
(c)15·6Ndownwards
(d)15·6Nupwards
(e)16·6Nupwards¶
19.(a)vbefore=3·96ms1downwards;vafter=2·97ms1upwards
(b)9·9×102s
20.(b)0·2s
(c)20Nupwards(or–20Nforthesignconventionusedinthegraph)
(d)4·0J
21.1·25×103Ntowardsthewall¶
22.9·0×104N
24.(a)(i)4·0ms1inthedirectionthe2·0kgtrolleywastravelling
(ii)4·0kgms1inthedirectionthe2·0kgtrolleywastravelling
(iii)4·0kgms1intheoppositedirectionthe2·0kgtrolleywastravelling
(b)8·0N
Section4:Gravitation
Projectiles
1.(a)7·8s
(b)2730m
2.(a)5·0s
(b)123m
3.(b)24·7ms1atanangleof52.6ºbelowthehorizontal
4.(a)vhoriz=5·1ms1,vvert=14·1ms1
5.(b)50ms1at36.9ºabovethehorizontal
(c)40ms1
(d)45m
(e)240m
6.(a)20ms1
(b)20.4m
(c)4·1s
(d)142m
7.(a)8s
(b)379m
8.(a)15·6ms1
12.2s
Gravityandmass
1.F=
3.2·67×104N
4.3·61×1047N
5.3·53×1022N
6.4·00×1015m
Section5:Specialrelativity
Relativity–Fundamentalprinciples
1.(a)1·0ms1north
(b)2·0ms1south
2.(a)0·8ms1east
(b)2·8ms1east
(c)2·2ms1west
3.(a)3·0ms1
(b)2·0ms1
4.A=Einstein’s;B=same;C=zero;D=velocity;E=speedoflight;F=slow;G=shortened
5.2000kmh1
6.(a)No
(b)Yes
7.3×108ms1
8.(a)100s
(b)100s
9.(a)3×108ms1
(b)3×108ms1
10.(a)0·3×108ms1
(b)1·5×108ms1
(c)1·8×108ms1
(d)2·4×108ms1
11.(a)c
(b)0·67c
(c)0·5c
(d)0·33c
Relativity–Timedilation
1.
2.(a)21·2h
(b)15·1year
(c)1043s
(d)1·32×104s
(e)2·10×108ms1
(f)9·15×107ms1
3.(a)11.20am
(b)11.20am
4.17·1billionyears
5.9·69s
6.3·9×104s
7.2·1×108ms1or0·70c
8.2·90108ms1or0·97c
9.2·60×108ms1
Relativity–Lengthcontraction
1.l’=l(1–v2/c2)
2.(a)4·71m
(b)11·2m
(c)0·227km
(d)160mm
(e)1·55×108ms1
(f)1·25×108ms1
3.16m
4.0·872m
5.267m
6.0·92km
7.2·60×108ms1
8.2·19×108ms1
9.4·23×107ms1or0.14c
Relativityquestions
1.(b)144m
2.(a)0·31ofayear
(c)8·97×1015m
3.(a)1·84×107s
(b)54·6mor54·7m
4.(a)120m
(b)72m
5.(a)5s
(b)9·22s
6.0·8c
7.(a)447m
(b)1·49×106s
8.(a)0·52c
(b)2·55×108s
(c)2·18×108s
9.(a)2·60×107s
(b)77·6m
(c)7·75mor7·76m
Section6:Theexpandinguniverse
TheDopplereffectandredshiftofgalaxies
1.A=higher;B=lower;C=Doppler;D=effect
2.(a)
(b)
3.(a)412Hz
(b)389Hz
(c)800Hz
(d)1035Hz
(e)20ms1
(f)60ms1
5.(a)1063Hz
(b)944Hz
6.(a)216Hz
(b)186Hz
7.14·5ms1
8.466Hz
9.556Hz,525Hz
10.(a)1·07m
(b)1·2m
11.(a)971Hz
(b)1030Hz
12.37·8ms1
13.(a)354kHz
(b)Decrease–denominatorislarger
(c)345kHz
14.(b)1569Hz
(c)1437Hz
15.21·3ms1
16.(b)2106Hz
(c)2302Hz
17.154s
18.120ms1
19.A=longer;B=red;C=shorter;D=blue;E=away
20.(a)1·01×101
(b)5·07×102
(c)525nm
(d)682nm
(e)434nm
(f)365nm
Hubble’slaw
1.(a)9·46×1015m
(b)4·73×1017m
(c)9·46×1020m
(d)1·51×1026m
2.(a)1·52×105lightyears
(b)4·2lightyears
(c)5·19×107lightyears
3.
v/m s1 / d/m / z1·70×105 / 7·10×1022 / 5·67×104
4·54×106 / 1·89×1024 / 1·51×102
1·70×106 / 7·08×1023 / 5·667×102
2·21×106 / 9·21×1023 / 7·37×103
4.(a)7·37×102
(b)2·21×107ms1
(c)Away
5.(a)1·49×107ms1
(b)6·21×1024m
6.(a)2·22×107ms1
(b)9·25×1024m
7.(a)8×102
(b)410nm
8.(a)3·0×107ms1
(b)1·25×1025m,1·32×109lightyears
9.2·27×107ms1
10.(b)4·55×1014Hz
11.(a)1·23×107ms1
(b)542millionlightyears
12.1·83×106ms1
13.3·24×1012m
Section7:BigBangtheory
1.(a)P
(b)Energyemittedincreases
(c)Increases
(d)(ii)Tmax=2·9×103mK
(e)(i)T=11,000K
(ii)max=1·3×107m
(iii)T=2·6K
(iv)=9·5×106m,infrared
OUR DYNAMIC UNIVERSE (H, PHYSICS)1
© Learning and Teaching Scotland 2010