Lecture

122

Game Theory :introduction and

Solving Two Person and Zero - Sum Game

22.1 IntroductiontoGameTheory

Gametheoryisatypeofdecisiontheoryinwhichone’schoiceofactionisdeterminedaftertakingintoaccountallpossiblealternativesavailabletoanopponentplayingthesamegame,ratherthanjustbythepossibilitiesofseveraloutcomeresults.Gametheorydoesnotinsistonhowagameshouldbeplayedbuttellstheprocedureandprinciplesbywhichactionshouldbeselected.Thus itisadecisiontheoryusefulincompetitivesituations.

Gameisdefined as anactivitybetweentwoormorepersonsaccordingtoasetofrulesattheendofwhicheachpersonreceivessomebenefitorsuffersloss.Thesetofrulesdefinesthegame.Goingthroughthesetofrulesoncebytheparticipantsdefinesa play.

22.2 PropertiesofaGame

1.Therearefinite numbersofcompetitorscalled‘players’

2.Eachplayerhasa finitenumberofpossiblecoursesofactioncalled‘strategies’

3.Allthestrategiesandtheireffectsareknowntotheplayersbutplayerdoesnotknowwhichstrategyistobechosen.

4.Agameisplayedwheneachplayerchoosesoneofhisstrategies.Thestrategiesareassumedtobemadesimultaneouslywithanoutcomesuchthatnoplayerknowshisopponentsstrategyuntilhedecideshisownstrategy.

5.Thegameisacombinationofthestrategiesandincertainunitswhichdeterminesthegainorloss.

6.Thefiguresshownastheoutcomesofstrategiesinamatrixformarecalled‘pay-offmatrix’.

7.Theplayerplayingthegamealwaystriestochoosethebestcourseofactionwhichresults inoptimalpayoffcalled‘optimalstrategy’.

8.Theexpectedpayoffwhenalltheplayersofthegamefollowtheiroptimalstrategiesisknownas‘valueofthegame’.Themainobjectiveofaproblemofagameistofindthevalueofthegame.

9.Thegameis saidtobe‘fair’gameifthevalueofthegameis zerootherwiseitsknownas‘unfair’.

22.3 CharacteristicsofGameTehory

1.Competitivegame

Acompetitivesituation iscalledacompetitivegameif ithasthe followingfourproperties

1.Therearefinitenumberofcompetitorssuchthatn≥2.Incasen=2,itiscalledatwo-person gameandincasen2, itisreferredasn-person game.

2.Eachplayerhasalistoffinitenumberofpossibleactivities.

3.Aplayissaidtooccurwheneachplayerchoosesoneofhisactivities.Thechoicesareassumedtobemadesimultaneouslyi.e.noplayerknowsthechoiceof theotheruntilhehasdecidedonhisown.

1

4.Everycombination ofactivitiesdeterminesanoutcomewhich resultsinagain ofpaymentstoeachplayer,providedeachplayerisplayinguncompromisinglytogetasmuchaspossible.Negativegainimpliesthe lossofsameamount.

2.Strategy

Thestrategyofaplayeristhepredeterminedrulebywhichplayerdecideshiscourseofactionfromhisown listduringthegame. Thetwotypesofstrategyare

1.Purestrategy

2.Mixedstrategy

PureStrategy

Ifaplayerknowsexactlywhattheotherplayerisgoingtodo,adeterministicsituationisobtainedandobjectivefunctionistomaximizethegain.Therefore,thepurestrategyisadecisionrulealwaystoselectaparticular courseofaction.

MixedStrategy

Ifaplayerisguessingas towhichactivityistobeselectedbytheother onany particularoccasion,aprobabilisticsituationisobtainedandobjectivefunctionistomaximizetheexpectedgain.Thusthemixedstrategyisaselectionamongpurestrategieswithfixedprobabilities.

3.Numberofpersons

Agameiscalled‘n’persongameifthenumberofpersonsplayingis‘n’.Thepersonmeansanindividualoragroupaimingataparticularobjective.

Two-person,zero-sumgame

Agamewithonlytwoplayers(playerAandplayerB)iscalleda‘two-person,zero-sumgame’,ifthelossesofoneplayerareequivalenttothegainsoftheothersothatthesumoftheirnetgainsiszero.

Two-person,zero-sumgamesarealsocalledrectangulargamesastheseareusuallyrepresentedbyapayoffmatrixinarectangularform.

4.Numberofactivities

Theactivities may befiniteorinfinite.

5.Payoff

Thequantitativemeasureofsatisfactionapersongetsattheendofeachplay iscalledapayoff

6.Payoffmatrix

SupposetheplayerAhas‘m’activitiesandtheplayerBhas‘n’activities.Thenapayoffmatrixcanbeformedbyadoptingthe followingrules

  • Rowdesignations foreachmatrixaretheactivities availableto player A
  • Columndesignations foreachmatrixaretheactivitiesavailabletoplayerB
  • CellentryVij isthepaymenttoplayerAinA’spayoffmatrixwhenAchoosestheactivityiandBchoosestheactivityj.
  • Withazero-sum,two-persongame,thecellentryintheplayerB’spayoffmatrixwillbenegativeofthecorrespondingcellentryVijintheplayerA’spayoff matrixsothatsumofpayoffmatrices for playerAandplayer Bisultimatelyzero.

7.Valueofthegame

Valueofthegameis themaximum guaranteedgameto playerA(maximizingplayer)ifboththeplayersusestheirbeststrategies. It isgenerallydenotedby‘V’anditisunique.

22.4 ClassificationofGames

Allgamesareclassifiedinto

  • Purestrategygames
  • Mixedstrategygames

Themethodforsolvingthesetwotypesvaries.Bysolvingagame,weneedtofindbeststrategiesfor boththeplayersandalsotofind thevalueofthegame.

Purestrategygamescanbesolvedbysaddlepointmethod.

Thedifferentmethodsfor solvinga mixedstrategygameare

  • Analyticalmethod
  • Graphicalmethod
  • Dominancerule
  • Simplexmethod

22.5 SolvingTwo-PersonandZero-SumGame

Two-personzero-sumgamesmaybedeterministicorprobabilistic.Thedeterministic games willhavesaddlepointsandpurestrategiesexistinsuchgames.Incontrast,theprobabilisticgameswillhavenosaddlepointsandmixedstrategiesaretakenwiththehelpofprobabilities.

Definitionofsaddlepoint

Asaddlepointofamatrixisthepositionofsuchanelementinthepayoffmatrix,whichisminimumin itsrowandthemaximum in itscolumn.

Proceduretofindthesaddlepoint

  • Selecttheminimumelementofeachrowofthepayoffmatrixandmarkthemwithcircles.
  • Selectthemaximumelementofeachcolumnofthepayoffmatrixandmarkthemwithsquares.
  • Iftheirappearsanelementinthepayoffmatrixwithacircleandasquaretogetherthenthatpositioniscalledsaddlepointand theelementisthevalueofthegame.

Solutionofgameswithsaddlepoint

Toobtainasolutionofagamewithasaddlepoint,itisfeasible tofindout

  • Beststrategyfor playerA
  • Beststrategyfor playerB
  • Thevalueofthegame

ThebeststrategiesforplayerAandBwillbethosewhichcorrespondtotherowandcolumnrespectivelythroughthesaddlepoint.

Examples

Solvethepayoffmatrix

Example-1

PlayerA

IIIIIIIV

PlayerB

IIIIIIIVV

Solution

StrategyofplayerA–IIStrategyofplayerB- IIIValueofthe game=1

Example-2

B1B2B3B4

A1A2

A3

Solution

StrategyofplayerA–A2StrategyofplayerB– B3Valueofthe game=4