Entering Gaussian System, Link 0=g03
Input=Dotz.com
Output=Dotz.log
Initial command:
//g03/l1.exe /info/Gau-5509.inp -scrdir=/info/
Entering Link 1 = //g03/l1.exe PID= 5510.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003, Gaussian, Inc.
All Rights Reserved.
This is the Gaussian(R) 03 program. It is based on the
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under DFARS:
RESTRICTED RIGHTS LEGEND
Use, duplication or disclosure by the US Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.
Gaussian, Inc.
Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is subject
to restrictions as set forth in subparagraph (c) of the
Commercial Computer Software - Restricted Rights clause at FAR
52.227-19.
Gaussian, Inc.
Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA
------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
------
Cite this work as:
Gaussian 03, Revision B.05,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,
K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,
Gaussian, Inc., Pittsburgh PA, 2003.
**********************************************
Gaussian 03: x86-Linux-G03RevB.05 24-Oct-2003
1-Feb-2007
**********************************************
%NProc=4
Will use up to 4 processors via shared memory.
%Chk=Dotz.chk
------
# B3PW91/6-31G** SCF=Direct Geom=(NoDistance,NoAngle)
------
1/38=1/1;
2/9=11,17=6,18=5,40=1/2;
3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,74=-6/1,2,3;
4//1;
5/5=2,32=1,38=5/2;
6/7=2,8=2,9=2,10=2,28=1/1;
99/5=1,9=1/99;
------
Gaussian generated by Cerius2
------
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
C
C 1 r2
C 2 r3 1 a3
C 3 r4 2 a4 1 t4 0
C 4 r5 3 a5 2 t5 0
C 5 r6 4 a6 3 t6 0
C 2 r7 1 a7 3 t7 0
C 7 r8 2 a8 6 t8 0
C 8 r9 7 a9 2 t9 0
C 9 r10 8 a10 7 t10 0
C 6 r11 5 a11 7 t11 0
C 11 r12 6 a12 10 t12 0
C 12 r13 11 a13 6 t13 0
C 13 r14 12 a14 11 t14 0
C 10 r15 9 a15 11 t15 0
C 15 r16 10 a16 14 t16 0
C 16 r17 15 a17 10 t17 0
C 9 r18 8 a18 10 t18 0
C 18 r19 9 a19 17 t19 0
C 19 r20 18 a20 9 t20 0
C 8 r21 7 a21 9 t21 0
C 1 r22 2 a22 3 t22 0
C 22 r23 1 a23 21 t23 0
C 23 r24 22 a24 1 t24 0
C 20 r25 19 a25 21 t25 0
H 25 r26 20 a26 24 t26 0
H 24 r27 23 a27 25 t27 0
H 23 r28 22 a28 24 t28 0
C 19 r29 18 a29 20 t29 0
C 29 r30 19 a30 18 t30 0
C 17 r31 16 a31 18 t31 0
H 31 r32 17 a32 30 t32 0
H 30 r33 29 a33 31 t33 0
H 29 r34 19 a34 30 t34 0
C 16 r35 15 a35 17 t35 0
C 35 r36 16 a36 15 t36 0
C 14 r37 13 a37 15 t37 0
H 37 r38 14 a38 36 t38 0
H 36 r39 35 a39 37 t39 0
H 35 r40 16 a40 36 t40 0
C 13 r41 12 a41 14 t41 0
C 41 r42 13 a42 12 t42 0
C 42 r43 41 a43 13 t43 0
C 12 r44 11 a44 13 t44 0
C 5 r45 4 a45 6 t45 0
C 45 r46 5 a46 44 t46 0
C 46 r47 45 a47 5 t47 0
C 4 r48 3 a48 5 t48 0
H 48 r49 4 a49 47 t49 0
H 47 r50 46 a50 48 t50 0
H 46 r51 45 a51 47 t51 0
H 43 r52 42 a52 44 t52 0
H 42 r53 41 a53 43 t53 0
H 41 r54 13 a54 42 t54 0
C 3 r55 2 a55 4 t55 0
C 55 r56 3 a56 2 t56 0
C 1 r57 2 a57 22 t57 0
H 57 r58 1 a58 56 t58 0
H 56 r59 55 a59 57 t59 0
H 55 r60 3 a60 56 t60 0
Variables:
r2 1.42117
r3 1.42173
r4 1.45813
r5 1.42133
r6 1.44407
r7 1.44342
r8 1.4203
r9 1.42027
r10 1.41951
r11 1.42034
r12 1.44386
r13 1.42188
r14 1.45842
r15 1.44365
r16 1.42112
r17 1.45768
r18 1.44404
r19 1.42185
r20 1.45779
r21 1.44293
r22 1.45813
r23 1.40029
r24 1.3852
r25 1.3999
r26 1.08293
r27 1.08648
r28 1.08331
r29 1.40021
r30 1.385
r31 1.40028
r32 1.08296
r33 1.08622
r34 1.08343
r35 1.39997
r36 1.38559
r37 1.39965
r38 1.08314
r39 1.08564
r40 1.08339
r41 1.3995
r42 1.38497
r43 1.38472
r44 1.42199
r45 1.42204
r46 1.40043
r47 1.38495
r48 1.39945
r49 1.0835
r50 1.08627
r51 1.08245
r52 1.08264
r53 1.08696
r54 1.08299
r55 1.40018
r56 1.38527
r57 1.40005
r58 1.08264
r59 1.08615
r60 1.08343
a3 119.38792
a4 119.69065
a5 119.58273
a6 120.35631
a7 120.33114
a8 120.00758
a9 119.97411
a10 120.0381
a11 120.01135
a12 120.02688
a13 120.35064
a14 119.61978
a15 119.98337
a16 120.32668
a17 119.62833
a18 119.97047
a19 120.32222
a20 119.60213
a21 119.9985
a22 119.62718
a23 121.22154
a24 121.19851
a25 121.19095
a26 120.3999
a27 120.04741
a28 120.4572
a29 119.1776
a30 121.13251
a31 121.20969
a32 120.40532
a33 119.97086
a34 120.4108
a35 119.21373
a36 121.15824
a37 121.25979
a38 120.40426
a39 120.04426
a40 120.39225
a41 119.16769
a42 121.18015
a43 119.98746
a44 120.27393
a45 119.35286
a46 119.1468
a47 121.17293
a48 121.20509
a49 120.46636
a50 120.00994
a51 120.43909
a52 118.40682
a53 120.00102
a54 120.44662
a55 119.15422
a56 121.16996
a57 119.18456
a58 120.49472
a59 120.02496
a60 120.45514
t4 179.44511
t5 3.1555
t6 -2.41048
t7 -179.52588
t8 -179.68983
t9 179.22347
t10 -0.93058
t11 -179.13402
t12 -179.97634
t13 -177.7449
t14 -1.01301
t15 -179.51335
t16 -179.15113
t17 -2.31476
t18 178.88733
t19 178.73703
t20 3.59265
t21 -179.80037
t22 -177.91053
t23 178.89635
t24 -178.8997
t25 178.85301
t26 179.20749
t27 -179.99899
t28 179.89258
t29 179.71855
t30 -0.61307
t31 -179.44283
t32 -179.20284
t33 -179.76805
t34 179.41793
t35 179.58207
t36 1.00731
t37 -179.4501
t38 179.66978
t39 -179.98624
t40 -179.13296
t41 -179.12268
t42 0.01518
t43 0.04472
t44 -179.94785
t45 -179.00412
t46 179.84242
t47 -0.51737
t48 179.95463
t49 -179.60252
t50 -179.62243
t51 179.82847
t52 -179.52446
t53 -179.97645
t54 179.56663
t55 179.34172
t56 0.48168
t57 179.0233
t58 -179.92206
t59 179.75963
t60 -179.3309
Stoichiometry C42H18
Framework group C1[X(C42H18)]
Deg. of freedom 174
Full point group C1 NOp 1
Largest Abelian subgroup C1 NOp 1
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
------
1 6 0 -3.777693 0.228178 -0.106538
2 6 0 -2.648816 1.089056 -0.041256
3 6 0 -2.845681 2.496801 -0.012924
4 6 0 -1.692662 3.385861 0.066285
5 6 0 -0.381377 2.837852 0.046379
6 6 0 -0.188835 1.407398 0.000767
7 6 0 -1.314116 0.540145 -0.014333
8 6 0 -1.124950 -0.867490 -0.009578
9 6 0 0.188880 -1.406858 0.000247
10 6 0 1.312957 -0.540113 -0.014642
11 6 0 1.124796 0.867395 -0.010399
12 6 0 2.268313 1.748903 -0.016914
13 6 0 3.585461 1.216620 -0.076370
14 6 0 3.778069 -0.228664 -0.108529
15 6 0 2.647513 -1.089831 -0.044722
16 6 0 2.844399 -2.497163 -0.029045
17 6 0 1.692391 -3.384939 0.068787
18 6 0 0.381132 -2.837191 0.049681
19 6 0 -0.739424 -3.710553 0.106758
20 6 0 -2.086869 -3.158722 0.035846
21 6 0 -2.267304 -1.748961 -0.019082
22 6 0 -3.584098 -1.216940 -0.089687
23 6 0 -4.673969 -2.095652 -0.118783
24 6 0 -4.490384 -3.468080 -0.080022
25 6 0 -3.210666 -3.992554 -0.003288
26 1 0 -3.095049 -5.069173 0.013168
27 1 0 -5.349216 -4.132883 -0.109782
28 1 0 -5.686276 -1.713428 -0.170743
29 6 0 -0.525052 -5.089244 0.224455
30 6 0 0.756114 -5.613127 0.273141
31 6 0 1.852566 -4.770451 0.193208
32 1 0 2.843097 -5.205501 0.241970
33 1 0 0.900607 -6.685309 0.370227
34 1 0 -1.364420 -5.771229 0.289079
35 6 0 4.145614 -3.006080 -0.117070
36 6 0 5.241535 -2.162120 -0.198036
37 6 0 5.058001 -0.789188 -0.189789
38 1 0 5.932126 -0.152753 -0.253365
39 1 0 6.242590 -2.576371 -0.268062
40 1 0 4.315539 -4.075868 -0.137358
41 6 0 4.675898 2.093817 -0.084252
42 6 0 4.492875 3.465757 -0.034959
43 6 0 3.213255 3.991589 0.024335
44 6 0 2.087323 3.158290 0.037230
45 6 0 0.739893 3.711208 0.093348
46 6 0 0.525568 5.091783 0.189701
47 6 0 -0.755159 5.617408 0.229002
48 6 0 -1.851825 4.773011 0.160914
49 1 0 -2.842144 5.211703 0.189078
50 1 0 -0.899578 6.691211 0.306955
51 1 0 1.363900 5.774829 0.238112
52 1 0 3.099504 5.067856 0.052897
53 1 0 5.353577 4.129532 -0.043207
54 1 0 5.688144 1.710707 -0.122310
55 6 0 -4.148974 3.004700 -0.075924
56 6 0 -5.244429 2.160489 -0.155035
57 6 0 -5.059995 0.787099 -0.165278
58 1 0 -5.934561 0.151193 -0.218772
59 1 0 -6.247268 2.574659 -0.205050
60 1 0 -4.322230 4.074188 -0.074605
------
Rotational constants (GHZ): 0.1052329 0.1052104 0.0526894
Standard basis: 6-31G(d,p) (6D, 7F)
There are 720 symmetry adapted basis functions of A symmetry.
Integral buffers will be 262144 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
720 basis functions, 1302 primitive gaussians, 720 cartesian basis functions
135 alpha electrons 135 beta electrons
nuclear repulsion energy 4380.5250294449 Hartrees.
NAtoms= 60 NActive= 60 NUniq= 60 SFac= 1.00D+00 NAtFMM= 60 Big=T
One-electron integrals computed using PRISM.
NBasis= 720 RedAO= T NBF= 720
NBsUse= 720 1.00D-06 NBFU= 720
Harris functional with IExCor= 408 diagonalized for initial guess.
ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 1.00D-06
HarFok: IExCor= 408 AccDes= 1.00D-06 IRadAn= 1 IDoV=1
ScaDFX= 1.000000 1.000000 1.000000 1.000000
CalDSu: requested number of processors reduced to: 2 ShMem 1 Linda.
Initial guess orbital symmetries:
Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A)
Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A)
The electronic state of the initial guess is 1-A.
Warning! Cutoffs for single-point calculations used.
Requested convergence on RMS density matrix=1.00D-04 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-02.
Requested convergence on energy=5.00D-05.
No special actions if energy rises.
CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.
CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.
CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.
CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.
CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.
CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.
CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.
CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.
SCF Done: E(RB+HF-PW91) = -1610.94346898 A.U. after 8 cycles
Convg = 0.1623D-04 -V/T = 2.0095
S**2 = 0.0000
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries:
Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A)
Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A)
The electronic state is 1-A.
Alpha occ. eigenvalues -- -10.19594 -10.19572 -10.19568 -10.19527 -10.19522
Alpha occ. eigenvalues -- -10.19501 -10.19455 -10.19450 -10.19449 -10.19445
Alpha occ. eigenvalues -- -10.19443 -10.19439 -10.19408 -10.19404 -10.19399
Alpha occ. eigenvalues -- -10.19392 -10.19387 -10.19379 -10.19373 -10.19366
Alpha occ. eigenvalues -- -10.19365 -10.19359 -10.19356 -10.19347 -10.18218
Alpha occ. eigenvalues -- -10.18218 -10.18217 -10.18215 -10.18213 -10.18211
Alpha occ. eigenvalues -- -10.18096 -10.18096 -10.18095 -10.18094 -10.18093
Alpha occ. eigenvalues -- -10.18091 -10.18081 -10.18078 -10.18078 -10.18078
Alpha occ. eigenvalues -- -10.18078 -10.18075 -0.91848 -0.89564 -0.89558
Alpha occ. eigenvalues -- -0.86834 -0.86832 -0.85932 -0.84711 -0.81535
Alpha occ. eigenvalues -- -0.81529 -0.81471 -0.79531 -0.79524 -0.76588
Alpha occ. eigenvalues -- -0.75673 -0.75668 -0.74925 -0.74923 -0.74121
Alpha occ. eigenvalues -- -0.71236 -0.70938 -0.70935 -0.66217 -0.65422
Alpha occ. eigenvalues -- -0.64760 -0.64757 -0.63472 -0.63463 -0.61315
Alpha occ. eigenvalues -- -0.61314 -0.59382 -0.58493 -0.58489 -0.55969
Alpha occ. eigenvalues -- -0.54478 -0.54470 -0.54355 -0.52316 -0.51818
Alpha occ. eigenvalues -- -0.51808 -0.50821 -0.49476 -0.49243 -0.49240
Alpha occ. eigenvalues -- -0.46923 -0.46918 -0.46223 -0.46219 -0.45150
Alpha occ. eigenvalues -- -0.44538 -0.43881 -0.43729 -0.43590 -0.43583
Alpha occ. eigenvalues -- -0.42615 -0.42220 -0.42218 -0.41856 -0.41848
Alpha occ. eigenvalues -- -0.41156 -0.41153 -0.41073 -0.39903 -0.39895
Alpha occ. eigenvalues -- -0.37903 -0.37884 -0.37527 -0.37511 -0.37393
Alpha occ. eigenvalues -- -0.37392 -0.37377 -0.36836 -0.35519 -0.35363
Alpha occ. eigenvalues -- -0.35220 -0.33828 -0.33818 -0.33498 -0.32110
Alpha occ. eigenvalues -- -0.31736 -0.31734 -0.30886 -0.30874 -0.29731
Alpha occ. eigenvalues -- -0.29725 -0.26046 -0.25541 -0.25535 -0.25276
Alpha occ. eigenvalues -- -0.25270 -0.24916 -0.21275 -0.19842 -0.19835
Alpha virt. eigenvalues -- -0.06584 -0.06576 -0.05924 -0.02766 -0.02188
Alpha virt. eigenvalues -- -0.02178 -0.00808 -0.00790 0.00122 0.03510
Alpha virt. eigenvalues -- 0.03513 0.06869 0.06906 0.07792 0.08670
Alpha virt. eigenvalues -- 0.09512 0.09538 0.10878 0.10934 0.11581
Alpha virt. eigenvalues -- 0.12335 0.13037 0.14675 0.14689 0.14690
Alpha virt. eigenvalues -- 0.16414 0.16431 0.16663 0.16674 0.16828
Alpha virt. eigenvalues -- 0.20042 0.21038 0.21044 0.21393 0.21400
Alpha virt. eigenvalues -- 0.22422 0.22881 0.22904 0.23062 0.23093
Alpha virt. eigenvalues -- 0.23118 0.23691 0.23770 0.24950 0.24969
Alpha virt. eigenvalues -- 0.25512 0.26291 0.26312 0.27326 0.27877
Alpha virt. eigenvalues -- 0.27891 0.28390 0.28876 0.29129 0.29560
Alpha virt. eigenvalues -- 0.30207 0.31511 0.31526 0.34054 0.34114
Alpha virt. eigenvalues -- 0.34547 0.34618 0.35272 0.37631 0.37649
Alpha virt. eigenvalues -- 0.38749 0.40030 0.40092 0.41735 0.42802
Alpha virt. eigenvalues -- 0.42817 0.43962 0.43990 0.44325 0.47966
Alpha virt. eigenvalues -- 0.48179 0.48189 0.48575 0.49505 0.50299
Alpha virt. eigenvalues -- 0.50454 0.51007 0.51049 0.52179 0.52198
Alpha virt. eigenvalues -- 0.52227 0.52323 0.52834 0.52850 0.53270
Alpha virt. eigenvalues -- 0.53666 0.54103 0.54116 0.54826 0.55177
Alpha virt. eigenvalues -- 0.55631 0.55837 0.55976 0.55983 0.56182
Alpha virt. eigenvalues -- 0.56255 0.56527 0.56583 0.56850 0.57469
Alpha virt. eigenvalues -- 0.57482 0.57715 0.58176 0.58282 0.58505
Alpha virt. eigenvalues -- 0.58535 0.58557 0.58890 0.58961 0.59891
Alpha virt. eigenvalues -- 0.60325 0.60383 0.60633 0.60775 0.60786
Alpha virt. eigenvalues -- 0.60805 0.61003 0.61109 0.61220 0.61537
Alpha virt. eigenvalues -- 0.61564 0.61720 0.61965 0.62004 0.62063
Alpha virt. eigenvalues -- 0.62100 0.62205 0.63415 0.63805 0.64137
Alpha virt. eigenvalues -- 0.64328 0.66036 0.66238 0.66419 0.66798
Alpha virt. eigenvalues -- 0.67394 0.68651 0.68700 0.69199 0.69202
Alpha virt. eigenvalues -- 0.70108 0.70113 0.72596 0.74518 0.74547
Alpha virt. eigenvalues -- 0.74570 0.74693 0.75687 0.76651 0.78445
Alpha virt. eigenvalues -- 0.78459 0.79190 0.79249 0.79280 0.79357
Alpha virt. eigenvalues -- 0.79358 0.79448 0.79867 0.79881 0.81159
Alpha virt. eigenvalues -- 0.84484 0.84623 0.84681 0.85616 0.85674
Alpha virt. eigenvalues -- 0.86231 0.86320 0.87575 0.88092 0.88938
Alpha virt. eigenvalues -- 0.89037 0.89379 0.89593 0.90362 0.90451
Alpha virt. eigenvalues -- 0.90748 0.93363 0.93409 0.93796 0.94001
Alpha virt. eigenvalues -- 0.94041 0.94315 0.94349 0.95579 0.95745
Alpha virt. eigenvalues -- 0.96444 0.96477 0.96752 0.97269 0.97319
Alpha virt. eigenvalues -- 0.98846 0.98852 0.99428 0.99475 1.00864
Alpha virt. eigenvalues -- 1.03592 1.03642 1.03888 1.04168 1.04381
Alpha virt. eigenvalues -- 1.04531 1.05220 1.05671 1.05907 1.08076
Alpha virt. eigenvalues -- 1.10009 1.10513 1.11504 1.11522 1.12292
Alpha virt. eigenvalues -- 1.13900 1.14175 1.14624 1.15156 1.15285
Alpha virt. eigenvalues -- 1.16564 1.16861 1.17772 1.18903 1.19121
Alpha virt. eigenvalues -- 1.19305 1.20712 1.20900 1.21157 1.22122
Alpha virt. eigenvalues -- 1.22253 1.22604 1.22850 1.23046 1.23312
Alpha virt. eigenvalues -- 1.24832 1.24858 1.25077 1.25503 1.25651
Alpha virt. eigenvalues -- 1.26380 1.26838 1.27048 1.29977 1.30625
Alpha virt. eigenvalues -- 1.30648 1.31023 1.32469 1.32578 1.35094
Alpha virt. eigenvalues -- 1.35200 1.35311 1.35511 1.35820 1.36548
Alpha virt. eigenvalues -- 1.36795 1.36937 1.37192 1.37263 1.37316
Alpha virt. eigenvalues -- 1.39506 1.39836 1.39991 1.40117 1.40823
Alpha virt. eigenvalues -- 1.41010 1.41175 1.41404 1.41539 1.41606
Alpha virt. eigenvalues -- 1.41838 1.42187 1.43238 1.46765 1.48490
Alpha virt. eigenvalues -- 1.48741 1.50631 1.50749 1.52646 1.52723
Alpha virt. eigenvalues -- 1.54347 1.54555 1.56152 1.56336 1.57797
Alpha virt. eigenvalues -- 1.58114 1.58354 1.62391 1.63842 1.63949
Alpha virt. eigenvalues -- 1.66192 1.66798 1.67650 1.68666 1.68744
Alpha virt. eigenvalues -- 1.69066 1.70971 1.71058 1.71400 1.71428
Alpha virt. eigenvalues -- 1.72160 1.72177 1.72943 1.74188 1.74430
Alpha virt. eigenvalues -- 1.74602 1.74893 1.75002 1.75032 1.76460
Alpha virt. eigenvalues -- 1.76888 1.77212 1.77788 1.78629 1.78701
Alpha virt. eigenvalues -- 1.79638 1.80819 1.81703 1.82048 1.82210
Alpha virt. eigenvalues -- 1.82414 1.82552 1.82963 1.83912 1.84031
Alpha virt. eigenvalues -- 1.84749 1.84782 1.85927 1.86324 1.86758
Alpha virt. eigenvalues -- 1.86807 1.88050 1.88475 1.89179 1.89346
Alpha virt. eigenvalues -- 1.90645 1.91090 1.92257 1.92347 1.92450
Alpha virt. eigenvalues -- 1.93891 1.94110 1.94677 1.95529 1.95799
Alpha virt. eigenvalues -- 1.95890 1.97554 1.97708 1.98196 1.98258
Alpha virt. eigenvalues -- 1.98387 1.98703 1.98718 1.99279 1.99809
Alpha virt. eigenvalues -- 1.99968 2.00116 2.00532 2.01170 2.01284
Alpha virt. eigenvalues -- 2.02628 2.03186 2.05244 2.05753 2.06622
Alpha virt. eigenvalues -- 2.06680 2.08437 2.11666 2.11675 2.12258
Alpha virt. eigenvalues -- 2.12276 2.16804 2.16953 2.17002 2.18926
Alpha virt. eigenvalues -- 2.19045 2.19180 2.19524 2.20097 2.20960
Alpha virt. eigenvalues -- 2.21302 2.21618 2.21780 2.22181 2.22275
Alpha virt. eigenvalues -- 2.22867 2.22926 2.24492 2.24548 2.24575
Alpha virt. eigenvalues -- 2.25139 2.25180 2.25488 2.28626 2.28688
Alpha virt. eigenvalues -- 2.28864 2.29248 2.29374 2.30275 2.31721
Alpha virt. eigenvalues -- 2.31800 2.32335 2.32374 2.33556 2.34745
Alpha virt. eigenvalues -- 2.37233 2.37443 2.38323 2.38339 2.38438
Alpha virt. eigenvalues -- 2.39061 2.39174 2.39202 2.40439 2.41074
Alpha virt. eigenvalues -- 2.41267 2.41619 2.41837 2.41942 2.42276
Alpha virt. eigenvalues -- 2.42308 2.42361 2.43632 2.43770 2.48188
Alpha virt. eigenvalues -- 2.48466 2.48598 2.48625 2.48865 2.49226
Alpha virt. eigenvalues -- 2.49766 2.50037 2.50252 2.50866 2.50956
Alpha virt. eigenvalues -- 2.50982 2.51454 2.52452 2.52571 2.54278
Alpha virt. eigenvalues -- 2.55173 2.55416 2.55804 2.55893 2.57322
Alpha virt. eigenvalues -- 2.57645 2.59687 2.59806 2.59823 2.60634
Alpha virt. eigenvalues -- 2.60953 2.61432 2.61623 2.61730 2.62071
Alpha virt. eigenvalues -- 2.62183 2.62624 2.66071 2.67025 2.67581
Alpha virt. eigenvalues -- 2.67616 2.68301 2.68312 2.68486 2.68678
Alpha virt. eigenvalues -- 2.69083 2.69122 2.69557 2.69629 2.73603
Alpha virt. eigenvalues -- 2.73669 2.74694 2.75365 2.75899 2.76292
Alpha virt. eigenvalues -- 2.77073 2.77744 2.79872 2.79944 2.80038
Alpha virt. eigenvalues -- 2.80659 2.82353 2.84639 2.84703 2.84810
Alpha virt. eigenvalues -- 2.84855 2.86957 2.88837 2.88966 2.88997
Alpha virt. eigenvalues -- 2.89083 2.93649 2.95536 2.96177 2.97937
Alpha virt. eigenvalues -- 2.98190 2.98963 2.99716 3.01347 3.01624
Alpha virt. eigenvalues -- 3.05174 3.07859 3.07923 3.16767 3.17654
Alpha virt. eigenvalues -- 3.17723 3.18048 3.18982 3.19066 3.20153
Alpha virt. eigenvalues -- 3.21423 3.21577 3.22996 3.23226 3.23791
Alpha virt. eigenvalues -- 3.25757 3.25776 3.27436 3.27465 3.27558
Alpha virt. eigenvalues -- 3.27750 3.27794 3.30944 3.30974 3.33962
Alpha virt. eigenvalues -- 3.36574 3.36623 3.40757 3.42261 3.42314
Alpha virt. eigenvalues -- 3.43980 3.44031 3.46320 3.48921 3.48960
Alpha virt. eigenvalues -- 3.56091 3.67070 3.74248 3.77679 3.77722
Alpha virt. eigenvalues -- 3.84715 3.84751 3.90787 4.07366 4.08497
Alpha virt. eigenvalues -- 4.08520 4.10864 4.10874 4.11403 4.12925
Alpha virt. eigenvalues -- 4.15109 4.15122 4.15599 4.15994 4.16167
Alpha virt. eigenvalues -- 4.16202 4.16564 4.16593 4.20112 4.20145
Alpha virt. eigenvalues -- 4.21966 4.22018 4.22164 4.23637 4.29802
Alpha virt. eigenvalues -- 4.29849 4.32783 4.38490 4.38950 4.39015
Alpha virt. eigenvalues -- 4.39454 4.39473 4.40879 4.50649 4.50658
Alpha virt. eigenvalues -- 4.54761 4.54767 4.56107 4.67891 4.72036
Alpha virt. eigenvalues -- 4.78271 4.78301 4.95227 4.95259 5.12314
Condensed to atoms (all electrons):
Mulliken atomic charges:
1
1 C 0.033699
2 C 0.028438
3 C 0.032076
4 C 0.034475
5 C 0.026352
6 C 0.011969
7 C 0.008657
8 C 0.006736
9 C 0.011547
10 C 0.009457
11 C 0.007574
12 C 0.029204
13 C 0.032555
14 C 0.034402
15 C 0.026531
16 C 0.032372
17 C 0.032554
18 C 0.027104
19 C 0.033893
20 C 0.032477
21 C 0.028593
22 C 0.032359
23 C -0.167096
24 C -0.135628
25 C -0.166846
26 H 0.121240
27 H 0.125138
28 H 0.121353
29 C -0.168289
30 C -0.135674
31 C -0.168242
32 H 0.121741
33 H 0.124771
34 H 0.121595
35 C -0.167938
36 C -0.135518
37 C -0.167503
38 H 0.121449
39 H 0.125015
40 H 0.121401
41 C -0.166810
42 C -0.135855
43 C -0.166047
44 C 0.031289
45 C 0.033838
46 C -0.168387
47 C -0.135583
48 C -0.169103
49 H 0.121604
50 H 0.124995
51 H 0.121444
52 H 0.121270
53 H 0.125008
54 H 0.121187
55 C -0.167391
56 C -0.136005
57 C -0.167136
58 H 0.121531
59 H 0.124926
60 H 0.121234
Sum of Mulliken charges= 0.00000
Atomic charges with hydrogens summed into heavy atoms:
1
1 C 0.033699
2 C 0.028438
3 C 0.032076
4 C 0.034475
5 C 0.026352
6 C 0.011969
7 C 0.008657
8 C 0.006736
9 C 0.011547
10 C 0.009457
11 C 0.007574
12 C 0.029204
13 C 0.032555
14 C 0.034402
15 C 0.026531
16 C 0.032372
17 C 0.032554
18 C 0.027104
19 C 0.033893
20 C 0.032477
21 C 0.028593
22 C 0.032359
23 C -0.045743
24 C -0.010491
25 C -0.045606
26 H 0.000000
27 H 0.000000
28 H 0.000000
29 C -0.046695
30 C -0.010902
31 C -0.046501
32 H 0.000000
33 H 0.000000
34 H 0.000000
35 C -0.046538
36 C -0.010503
37 C -0.046054
38 H 0.000000
39 H 0.000000
40 H 0.000000
41 C -0.045623
42 C -0.010847
43 C -0.044778
44 C 0.031289
45 C 0.033838
46 C -0.046944
47 C -0.010589
48 C -0.047499
49 H 0.000000
50 H 0.000000
51 H 0.000000
52 H 0.000000
53 H 0.000000
54 H 0.000000
55 C -0.046157
56 C -0.011079
57 C -0.045606
58 H 0.000000
59 H 0.000000
60 H 0.000000
Sum of Mulliken charges= 0.00000
Electronic spatial extent (au): <R**2>= 18845.4001
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= -0.0010 Y= 0.0057 Z= 0.0132 Tot= 0.0144
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -194.3761 YY= -194.4108 ZZ= -244.5363
XY= 0.0088 XZ= 0.0103 YZ= 0.0018
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= 16.7316 YY= 16.6969 ZZ= -33.4286
XY= 0.0088 XZ= 0.0103 YZ= 0.0018
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= -0.1369 YYY= 0.5730 ZZZ= 0.0102 XYY= -0.0932
XXY= 0.0797 XXZ= -11.4345 XZZ= 0.1015 YZZ= -0.2370
YYZ= 12.4589 XYZ= 0.0594
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX=-11358.8940 YYYY=-11361.9140 ZZZZ= -275.2353 XXXY= 0.5878
XXXZ= -1.4788 YYYX= 1.2485 YYYZ= -5.7485 ZZZX= -0.0239
ZZZY= -0.0838 XXYY= -3783.3635 XXZZ= -2413.2122 YYZZ= -2410.5541
XXYZ= 6.0812 YYXZ= 2.0873 ZZXY= -0.9236
N-N= 4.380525029445D+03 E-N=-1.249236865784D+04 KE= 1.595743386235D+03
1\1\GINC-PENELOPE\SP\RB3PW91\6-31G(d,p)\C42H18\RSALCEDO\01-Feb-2007\0\
\# B3PW91/6-31G** SCF=DIRECT GEOM=(NODISTANCE,NOANGLE)\\Gaussian gener
ated by Cerius2\\0,1\C\C,1,1.421174\C,2,1.421726,1,119.387923\C,3,1.45
8134,2,119.690645,1,179.445107,0\C,4,1.42133,3,119.582729,2,3.155498,0
\C,5,1.444074,4,120.356312,3,-2.410483,0\C,2,1.443417,1,120.331141,3,-
179.52588,0\C,7,1.420296,2,120.007581,6,-179.689831,0\C,8,1.420269,7,1
19.974109,2,179.223474,0\C,9,1.419513,8,120.038096,7,-0.930584,0\C,6,1
.420336,5,120.01135,7,-179.134023,0\C,11,1.44386,6,120.026875,10,-179.
976339,0\C,12,1.421878,11,120.350639,6,-177.744896,0\C,13,1.458417,12,
119.619782,11,-1.013014,0\C,10,1.443653,9,119.983373,11,-179.51335,0\C
,15,1.421124,10,120.326681,14,-179.151133,0\C,16,1.457683,15,119.62832
6,10,-2.314759,0\C,9,1.444042,8,119.970467,10,178.88733,0\C,18,1.42185
3,9,120.322221,17,178.737033,0\C,19,1.457791,18,119.602132,9,3.592645,
0\C,8,1.442933,7,119.9985,9,-179.80037,0\C,1,1.458125,2,119.627185,3,-
177.91053,0\C,22,1.400286,1,121.221536,21,178.896354,0\C,23,1.385195,2
2,121.198513,1,-178.899696,0\C,20,1.399902,19,121.190949,21,178.853012
,0\H,25,1.082934,20,120.399897,24,179.207495,0\H,24,1.086481,23,120.04
7411,25,-179.998992,0\H,23,1.08331,22,120.457201,24,179.892582,0\C,19,
1.400213,18,119.177599,20,179.718545,0\C,29,1.384995,19,121.132515,18,
-0.613071,0\C,17,1.400279,16,121.20969,18,-179.442829,0\H,31,1.082958,
17,120.405321,30,-179.202842,0\H,30,1.086222,29,119.970855,31,-179.768
054,0\H,29,1.083429,19,120.410797,30,179.41793,0\C,16,1.399966,15,119.
21373,17,179.582065,0\C,35,1.385593,16,121.158244,15,1.007306,0\C,14,1
.399648,13,121.259788,15,-179.450104,0\H,37,1.083137,14,120.404263,36,
179.669782,0\H,36,1.085642,35,120.044257,37,-179.986245,0\H,35,1.08338
9,16,120.392245,36,-179.132963,0\C,13,1.399496,12,119.167688,14,-179.1
22682,0\C,41,1.384971,13,121.180148,12,0.015183,0\C,42,1.384717,41,119
.987457,13,0.044723,0\C,12,1.421992,11,120.273929,13,-179.947845,0\C,5
,1.422042,4,119.352855,6,-179.004115,0\C,45,1.40043,5,119.146802,44,17
9.842421,0\C,46,1.384951,45,121.172927,5,-0.517365,0\C,4,1.399454,3,12
1.205087,5,179.954631,0\H,48,1.083502,4,120.466365,47,-179.602519,0\H,
47,1.086272,46,120.009937,48,-179.62243,0\H,46,1.082449,45,120.439089,
47,179.828468,0\H,43,1.082638,42,118.406816,44,-179.524458,0\H,42,1.08
6957,41,120.001023,43,-179.976445,0\H,41,1.082989,13,120.446619,42,179
.566626,0\C,3,1.40018,2,119.154223,4,179.341722,0\C,55,1.38527,3,121.1
69955,2,0.481682,0\C,1,1.400051,2,119.18456,22,179.023299,0\H,57,1.082
637,1,120.494719,56,-179.922057,0\H,56,1.086151,55,120.02496,57,179.75
9631,0\H,55,1.083431,3,120.455139,56,-179.330904,0\\Version=x86-Linux-
G03RevB.05\State=1-A\HF=-1610.943469\RMSD=1.623e-05\Dipole=0.002022,0.
0051407,0.0012772\PG=C01 [X(C42H18)]\\@
IF YOU BELIEVE CERTAIN WORDS, YOU BELIEVE THEIR HIDDEN ARGUMENTS.
WHEN YOU BELIEVE SOMETHING IS RIGHT OR WRONG, TRUE OR FALSE,
YOU BELIEVE THE ASSUMPTIONS IN THE WORDS WHICH EXPRESS THE ARGUMENTS.
SUCH ASSUMPTIONS ARE OFTEN FULL OF HOLES, BUT REMAIN MOST PRECIOUS
TO THE CONVINCED.
-- THE OPEN-ENDED PROOF FROM THE PANOPLIA PROPHETICA
CHILDREN OF DUNE BY FRANK HERBERT
Job cpu time: 0 days 1 hours 47 minutes 26.6 seconds.
File lengths (MBytes): RWF= 281 Int= 0 D2E= 0 Chk= 29 Scr= 1
Normal termination of Gaussian 03 at Thu Feb 1 11:05:45 2007.