Entering Gaussian System, Link 0=g03

Input=Dotz.com

Output=Dotz.log

Initial command:

//g03/l1.exe /info/Gau-5509.inp -scrdir=/info/

Entering Link 1 = //g03/l1.exe PID= 5510.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003, Gaussian, Inc.

All Rights Reserved.

This is the Gaussian(R) 03 program. It is based on the

the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),

the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),

the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),

the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),

the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),

the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon

University), and the Gaussian 82(TM) system (copyright 1983,

Carnegie Mellon University). Gaussian is a federally registered

trademark of Gaussian, Inc.

This software contains proprietary and confidential information,

including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be

used, copied, transmitted, or stored only in accord with that

written license.

The following legend is applicable only to US Government

contracts under DFARS:

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the US Government is subject

to restrictions as set forth in subparagraph (c)(1)(ii) of the

Rights in Technical Data and Computer Software clause at DFARS

252.227-7013.

Gaussian, Inc.

Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA

The following legend is applicable only to US Government

contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is subject

to restrictions as set forth in subparagraph (c) of the

Commercial Computer Software - Restricted Rights clause at FAR

52.227-19.

Gaussian, Inc.

Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA

------

Warning -- This program may not be used in any manner that

competes with the business of Gaussian, Inc. or will provide

assistance to any competitor of Gaussian, Inc. The licensee

of this program is prohibited from giving any competitor of

Gaussian, Inc. access to this program. By using this program,

the user acknowledges that Gaussian, Inc. is engaged in the

business of creating and licensing software in the field of

computational chemistry and represents and warrants to the

licensee that it is not a competitor of Gaussian, Inc. and that

it will not use this program in any manner prohibited above.

------

Cite this work as:

Gaussian 03, Revision B.05,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,

K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,

V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,

G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,

C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,

A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,

K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,

V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,

O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,

J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,

J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,

I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,

C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,

B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,

Gaussian, Inc., Pittsburgh PA, 2003.

**********************************************

Gaussian 03: x86-Linux-G03RevB.05 24-Oct-2003

1-Feb-2007

**********************************************

%NProc=4

Will use up to 4 processors via shared memory.

%Chk=Dotz.chk

------

# B3PW91/6-31G** SCF=Direct Geom=(NoDistance,NoAngle)

------

1/38=1/1;

2/9=11,17=6,18=5,40=1/2;

3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,74=-6/1,2,3;

4//1;

5/5=2,32=1,38=5/2;

6/7=2,8=2,9=2,10=2,28=1/1;

99/5=1,9=1/99;

------

Gaussian generated by Cerius2

------

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

C

C 1 r2

C 2 r3 1 a3

C 3 r4 2 a4 1 t4 0

C 4 r5 3 a5 2 t5 0

C 5 r6 4 a6 3 t6 0

C 2 r7 1 a7 3 t7 0

C 7 r8 2 a8 6 t8 0

C 8 r9 7 a9 2 t9 0

C 9 r10 8 a10 7 t10 0

C 6 r11 5 a11 7 t11 0

C 11 r12 6 a12 10 t12 0

C 12 r13 11 a13 6 t13 0

C 13 r14 12 a14 11 t14 0

C 10 r15 9 a15 11 t15 0

C 15 r16 10 a16 14 t16 0

C 16 r17 15 a17 10 t17 0

C 9 r18 8 a18 10 t18 0

C 18 r19 9 a19 17 t19 0

C 19 r20 18 a20 9 t20 0

C 8 r21 7 a21 9 t21 0

C 1 r22 2 a22 3 t22 0

C 22 r23 1 a23 21 t23 0

C 23 r24 22 a24 1 t24 0

C 20 r25 19 a25 21 t25 0

H 25 r26 20 a26 24 t26 0

H 24 r27 23 a27 25 t27 0

H 23 r28 22 a28 24 t28 0

C 19 r29 18 a29 20 t29 0

C 29 r30 19 a30 18 t30 0

C 17 r31 16 a31 18 t31 0

H 31 r32 17 a32 30 t32 0

H 30 r33 29 a33 31 t33 0

H 29 r34 19 a34 30 t34 0

C 16 r35 15 a35 17 t35 0

C 35 r36 16 a36 15 t36 0

C 14 r37 13 a37 15 t37 0

H 37 r38 14 a38 36 t38 0

H 36 r39 35 a39 37 t39 0

H 35 r40 16 a40 36 t40 0

C 13 r41 12 a41 14 t41 0

C 41 r42 13 a42 12 t42 0

C 42 r43 41 a43 13 t43 0

C 12 r44 11 a44 13 t44 0

C 5 r45 4 a45 6 t45 0

C 45 r46 5 a46 44 t46 0

C 46 r47 45 a47 5 t47 0

C 4 r48 3 a48 5 t48 0

H 48 r49 4 a49 47 t49 0

H 47 r50 46 a50 48 t50 0

H 46 r51 45 a51 47 t51 0

H 43 r52 42 a52 44 t52 0

H 42 r53 41 a53 43 t53 0

H 41 r54 13 a54 42 t54 0

C 3 r55 2 a55 4 t55 0

C 55 r56 3 a56 2 t56 0

C 1 r57 2 a57 22 t57 0

H 57 r58 1 a58 56 t58 0

H 56 r59 55 a59 57 t59 0

H 55 r60 3 a60 56 t60 0

Variables:

r2 1.42117

r3 1.42173

r4 1.45813

r5 1.42133

r6 1.44407

r7 1.44342

r8 1.4203

r9 1.42027

r10 1.41951

r11 1.42034

r12 1.44386

r13 1.42188

r14 1.45842

r15 1.44365

r16 1.42112

r17 1.45768

r18 1.44404

r19 1.42185

r20 1.45779

r21 1.44293

r22 1.45813

r23 1.40029

r24 1.3852

r25 1.3999

r26 1.08293

r27 1.08648

r28 1.08331

r29 1.40021

r30 1.385

r31 1.40028

r32 1.08296

r33 1.08622

r34 1.08343

r35 1.39997

r36 1.38559

r37 1.39965

r38 1.08314

r39 1.08564

r40 1.08339

r41 1.3995

r42 1.38497

r43 1.38472

r44 1.42199

r45 1.42204

r46 1.40043

r47 1.38495

r48 1.39945

r49 1.0835

r50 1.08627

r51 1.08245

r52 1.08264

r53 1.08696

r54 1.08299

r55 1.40018

r56 1.38527

r57 1.40005

r58 1.08264

r59 1.08615

r60 1.08343

a3 119.38792

a4 119.69065

a5 119.58273

a6 120.35631

a7 120.33114

a8 120.00758

a9 119.97411

a10 120.0381

a11 120.01135

a12 120.02688

a13 120.35064

a14 119.61978

a15 119.98337

a16 120.32668

a17 119.62833

a18 119.97047

a19 120.32222

a20 119.60213

a21 119.9985

a22 119.62718

a23 121.22154

a24 121.19851

a25 121.19095

a26 120.3999

a27 120.04741

a28 120.4572

a29 119.1776

a30 121.13251

a31 121.20969

a32 120.40532

a33 119.97086

a34 120.4108

a35 119.21373

a36 121.15824

a37 121.25979

a38 120.40426

a39 120.04426

a40 120.39225

a41 119.16769

a42 121.18015

a43 119.98746

a44 120.27393

a45 119.35286

a46 119.1468

a47 121.17293

a48 121.20509

a49 120.46636

a50 120.00994

a51 120.43909

a52 118.40682

a53 120.00102

a54 120.44662

a55 119.15422

a56 121.16996

a57 119.18456

a58 120.49472

a59 120.02496

a60 120.45514

t4 179.44511

t5 3.1555

t6 -2.41048

t7 -179.52588

t8 -179.68983

t9 179.22347

t10 -0.93058

t11 -179.13402

t12 -179.97634

t13 -177.7449

t14 -1.01301

t15 -179.51335

t16 -179.15113

t17 -2.31476

t18 178.88733

t19 178.73703

t20 3.59265

t21 -179.80037

t22 -177.91053

t23 178.89635

t24 -178.8997

t25 178.85301

t26 179.20749

t27 -179.99899

t28 179.89258

t29 179.71855

t30 -0.61307

t31 -179.44283

t32 -179.20284

t33 -179.76805

t34 179.41793

t35 179.58207

t36 1.00731

t37 -179.4501

t38 179.66978

t39 -179.98624

t40 -179.13296

t41 -179.12268

t42 0.01518

t43 0.04472

t44 -179.94785

t45 -179.00412

t46 179.84242

t47 -0.51737

t48 179.95463

t49 -179.60252

t50 -179.62243

t51 179.82847

t52 -179.52446

t53 -179.97645

t54 179.56663

t55 179.34172

t56 0.48168

t57 179.0233

t58 -179.92206

t59 179.75963

t60 -179.3309

Stoichiometry C42H18

Framework group C1[X(C42H18)]

Deg. of freedom 174

Full point group C1 NOp 1

Largest Abelian subgroup C1 NOp 1

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

------

1 6 0 -3.777693 0.228178 -0.106538

2 6 0 -2.648816 1.089056 -0.041256

3 6 0 -2.845681 2.496801 -0.012924

4 6 0 -1.692662 3.385861 0.066285

5 6 0 -0.381377 2.837852 0.046379

6 6 0 -0.188835 1.407398 0.000767

7 6 0 -1.314116 0.540145 -0.014333

8 6 0 -1.124950 -0.867490 -0.009578

9 6 0 0.188880 -1.406858 0.000247

10 6 0 1.312957 -0.540113 -0.014642

11 6 0 1.124796 0.867395 -0.010399

12 6 0 2.268313 1.748903 -0.016914

13 6 0 3.585461 1.216620 -0.076370

14 6 0 3.778069 -0.228664 -0.108529

15 6 0 2.647513 -1.089831 -0.044722

16 6 0 2.844399 -2.497163 -0.029045

17 6 0 1.692391 -3.384939 0.068787

18 6 0 0.381132 -2.837191 0.049681

19 6 0 -0.739424 -3.710553 0.106758

20 6 0 -2.086869 -3.158722 0.035846

21 6 0 -2.267304 -1.748961 -0.019082

22 6 0 -3.584098 -1.216940 -0.089687

23 6 0 -4.673969 -2.095652 -0.118783

24 6 0 -4.490384 -3.468080 -0.080022

25 6 0 -3.210666 -3.992554 -0.003288

26 1 0 -3.095049 -5.069173 0.013168

27 1 0 -5.349216 -4.132883 -0.109782

28 1 0 -5.686276 -1.713428 -0.170743

29 6 0 -0.525052 -5.089244 0.224455

30 6 0 0.756114 -5.613127 0.273141

31 6 0 1.852566 -4.770451 0.193208

32 1 0 2.843097 -5.205501 0.241970

33 1 0 0.900607 -6.685309 0.370227

34 1 0 -1.364420 -5.771229 0.289079

35 6 0 4.145614 -3.006080 -0.117070

36 6 0 5.241535 -2.162120 -0.198036

37 6 0 5.058001 -0.789188 -0.189789

38 1 0 5.932126 -0.152753 -0.253365

39 1 0 6.242590 -2.576371 -0.268062

40 1 0 4.315539 -4.075868 -0.137358

41 6 0 4.675898 2.093817 -0.084252

42 6 0 4.492875 3.465757 -0.034959

43 6 0 3.213255 3.991589 0.024335

44 6 0 2.087323 3.158290 0.037230

45 6 0 0.739893 3.711208 0.093348

46 6 0 0.525568 5.091783 0.189701

47 6 0 -0.755159 5.617408 0.229002

48 6 0 -1.851825 4.773011 0.160914

49 1 0 -2.842144 5.211703 0.189078

50 1 0 -0.899578 6.691211 0.306955

51 1 0 1.363900 5.774829 0.238112

52 1 0 3.099504 5.067856 0.052897

53 1 0 5.353577 4.129532 -0.043207

54 1 0 5.688144 1.710707 -0.122310

55 6 0 -4.148974 3.004700 -0.075924

56 6 0 -5.244429 2.160489 -0.155035

57 6 0 -5.059995 0.787099 -0.165278

58 1 0 -5.934561 0.151193 -0.218772

59 1 0 -6.247268 2.574659 -0.205050

60 1 0 -4.322230 4.074188 -0.074605

------

Rotational constants (GHZ): 0.1052329 0.1052104 0.0526894

Standard basis: 6-31G(d,p) (6D, 7F)

There are 720 symmetry adapted basis functions of A symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

720 basis functions, 1302 primitive gaussians, 720 cartesian basis functions

135 alpha electrons 135 beta electrons

nuclear repulsion energy 4380.5250294449 Hartrees.

NAtoms= 60 NActive= 60 NUniq= 60 SFac= 1.00D+00 NAtFMM= 60 Big=T

One-electron integrals computed using PRISM.

NBasis= 720 RedAO= T NBF= 720

NBsUse= 720 1.00D-06 NBFU= 720

Harris functional with IExCor= 408 diagonalized for initial guess.

ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 1.00D-06

HarFok: IExCor= 408 AccDes= 1.00D-06 IRadAn= 1 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

CalDSu: requested number of processors reduced to: 2 ShMem 1 Linda.

Initial guess orbital symmetries:

Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A)

Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A)

The electronic state of the initial guess is 1-A.

Warning! Cutoffs for single-point calculations used.

Requested convergence on RMS density matrix=1.00D-04 within 128 cycles.

Requested convergence on MAX density matrix=1.00D-02.

Requested convergence on energy=5.00D-05.

No special actions if energy rises.

CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.

CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.

CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.

CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.

CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.

CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.

CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.

CalDSu: requested number of processors reduced to: 3 ShMem 1 Linda.

SCF Done: E(RB+HF-PW91) = -1610.94346898 A.U. after 8 cycles

Convg = 0.1623D-04 -V/T = 2.0095

S**2 = 0.0000

**********************************************************************

Population analysis using the SCF density.

**********************************************************************

Orbital symmetries:

Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A)

Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A)

The electronic state is 1-A.

Alpha occ. eigenvalues -- -10.19594 -10.19572 -10.19568 -10.19527 -10.19522

Alpha occ. eigenvalues -- -10.19501 -10.19455 -10.19450 -10.19449 -10.19445

Alpha occ. eigenvalues -- -10.19443 -10.19439 -10.19408 -10.19404 -10.19399

Alpha occ. eigenvalues -- -10.19392 -10.19387 -10.19379 -10.19373 -10.19366

Alpha occ. eigenvalues -- -10.19365 -10.19359 -10.19356 -10.19347 -10.18218

Alpha occ. eigenvalues -- -10.18218 -10.18217 -10.18215 -10.18213 -10.18211

Alpha occ. eigenvalues -- -10.18096 -10.18096 -10.18095 -10.18094 -10.18093

Alpha occ. eigenvalues -- -10.18091 -10.18081 -10.18078 -10.18078 -10.18078

Alpha occ. eigenvalues -- -10.18078 -10.18075 -0.91848 -0.89564 -0.89558

Alpha occ. eigenvalues -- -0.86834 -0.86832 -0.85932 -0.84711 -0.81535

Alpha occ. eigenvalues -- -0.81529 -0.81471 -0.79531 -0.79524 -0.76588

Alpha occ. eigenvalues -- -0.75673 -0.75668 -0.74925 -0.74923 -0.74121

Alpha occ. eigenvalues -- -0.71236 -0.70938 -0.70935 -0.66217 -0.65422

Alpha occ. eigenvalues -- -0.64760 -0.64757 -0.63472 -0.63463 -0.61315

Alpha occ. eigenvalues -- -0.61314 -0.59382 -0.58493 -0.58489 -0.55969

Alpha occ. eigenvalues -- -0.54478 -0.54470 -0.54355 -0.52316 -0.51818

Alpha occ. eigenvalues -- -0.51808 -0.50821 -0.49476 -0.49243 -0.49240

Alpha occ. eigenvalues -- -0.46923 -0.46918 -0.46223 -0.46219 -0.45150

Alpha occ. eigenvalues -- -0.44538 -0.43881 -0.43729 -0.43590 -0.43583

Alpha occ. eigenvalues -- -0.42615 -0.42220 -0.42218 -0.41856 -0.41848

Alpha occ. eigenvalues -- -0.41156 -0.41153 -0.41073 -0.39903 -0.39895

Alpha occ. eigenvalues -- -0.37903 -0.37884 -0.37527 -0.37511 -0.37393

Alpha occ. eigenvalues -- -0.37392 -0.37377 -0.36836 -0.35519 -0.35363

Alpha occ. eigenvalues -- -0.35220 -0.33828 -0.33818 -0.33498 -0.32110

Alpha occ. eigenvalues -- -0.31736 -0.31734 -0.30886 -0.30874 -0.29731

Alpha occ. eigenvalues -- -0.29725 -0.26046 -0.25541 -0.25535 -0.25276

Alpha occ. eigenvalues -- -0.25270 -0.24916 -0.21275 -0.19842 -0.19835

Alpha virt. eigenvalues -- -0.06584 -0.06576 -0.05924 -0.02766 -0.02188

Alpha virt. eigenvalues -- -0.02178 -0.00808 -0.00790 0.00122 0.03510

Alpha virt. eigenvalues -- 0.03513 0.06869 0.06906 0.07792 0.08670

Alpha virt. eigenvalues -- 0.09512 0.09538 0.10878 0.10934 0.11581

Alpha virt. eigenvalues -- 0.12335 0.13037 0.14675 0.14689 0.14690

Alpha virt. eigenvalues -- 0.16414 0.16431 0.16663 0.16674 0.16828

Alpha virt. eigenvalues -- 0.20042 0.21038 0.21044 0.21393 0.21400

Alpha virt. eigenvalues -- 0.22422 0.22881 0.22904 0.23062 0.23093

Alpha virt. eigenvalues -- 0.23118 0.23691 0.23770 0.24950 0.24969

Alpha virt. eigenvalues -- 0.25512 0.26291 0.26312 0.27326 0.27877

Alpha virt. eigenvalues -- 0.27891 0.28390 0.28876 0.29129 0.29560

Alpha virt. eigenvalues -- 0.30207 0.31511 0.31526 0.34054 0.34114

Alpha virt. eigenvalues -- 0.34547 0.34618 0.35272 0.37631 0.37649

Alpha virt. eigenvalues -- 0.38749 0.40030 0.40092 0.41735 0.42802

Alpha virt. eigenvalues -- 0.42817 0.43962 0.43990 0.44325 0.47966

Alpha virt. eigenvalues -- 0.48179 0.48189 0.48575 0.49505 0.50299

Alpha virt. eigenvalues -- 0.50454 0.51007 0.51049 0.52179 0.52198

Alpha virt. eigenvalues -- 0.52227 0.52323 0.52834 0.52850 0.53270

Alpha virt. eigenvalues -- 0.53666 0.54103 0.54116 0.54826 0.55177

Alpha virt. eigenvalues -- 0.55631 0.55837 0.55976 0.55983 0.56182

Alpha virt. eigenvalues -- 0.56255 0.56527 0.56583 0.56850 0.57469

Alpha virt. eigenvalues -- 0.57482 0.57715 0.58176 0.58282 0.58505

Alpha virt. eigenvalues -- 0.58535 0.58557 0.58890 0.58961 0.59891

Alpha virt. eigenvalues -- 0.60325 0.60383 0.60633 0.60775 0.60786

Alpha virt. eigenvalues -- 0.60805 0.61003 0.61109 0.61220 0.61537

Alpha virt. eigenvalues -- 0.61564 0.61720 0.61965 0.62004 0.62063

Alpha virt. eigenvalues -- 0.62100 0.62205 0.63415 0.63805 0.64137

Alpha virt. eigenvalues -- 0.64328 0.66036 0.66238 0.66419 0.66798

Alpha virt. eigenvalues -- 0.67394 0.68651 0.68700 0.69199 0.69202

Alpha virt. eigenvalues -- 0.70108 0.70113 0.72596 0.74518 0.74547

Alpha virt. eigenvalues -- 0.74570 0.74693 0.75687 0.76651 0.78445

Alpha virt. eigenvalues -- 0.78459 0.79190 0.79249 0.79280 0.79357

Alpha virt. eigenvalues -- 0.79358 0.79448 0.79867 0.79881 0.81159

Alpha virt. eigenvalues -- 0.84484 0.84623 0.84681 0.85616 0.85674

Alpha virt. eigenvalues -- 0.86231 0.86320 0.87575 0.88092 0.88938

Alpha virt. eigenvalues -- 0.89037 0.89379 0.89593 0.90362 0.90451

Alpha virt. eigenvalues -- 0.90748 0.93363 0.93409 0.93796 0.94001

Alpha virt. eigenvalues -- 0.94041 0.94315 0.94349 0.95579 0.95745

Alpha virt. eigenvalues -- 0.96444 0.96477 0.96752 0.97269 0.97319

Alpha virt. eigenvalues -- 0.98846 0.98852 0.99428 0.99475 1.00864

Alpha virt. eigenvalues -- 1.03592 1.03642 1.03888 1.04168 1.04381

Alpha virt. eigenvalues -- 1.04531 1.05220 1.05671 1.05907 1.08076

Alpha virt. eigenvalues -- 1.10009 1.10513 1.11504 1.11522 1.12292

Alpha virt. eigenvalues -- 1.13900 1.14175 1.14624 1.15156 1.15285

Alpha virt. eigenvalues -- 1.16564 1.16861 1.17772 1.18903 1.19121

Alpha virt. eigenvalues -- 1.19305 1.20712 1.20900 1.21157 1.22122

Alpha virt. eigenvalues -- 1.22253 1.22604 1.22850 1.23046 1.23312

Alpha virt. eigenvalues -- 1.24832 1.24858 1.25077 1.25503 1.25651

Alpha virt. eigenvalues -- 1.26380 1.26838 1.27048 1.29977 1.30625

Alpha virt. eigenvalues -- 1.30648 1.31023 1.32469 1.32578 1.35094

Alpha virt. eigenvalues -- 1.35200 1.35311 1.35511 1.35820 1.36548

Alpha virt. eigenvalues -- 1.36795 1.36937 1.37192 1.37263 1.37316

Alpha virt. eigenvalues -- 1.39506 1.39836 1.39991 1.40117 1.40823

Alpha virt. eigenvalues -- 1.41010 1.41175 1.41404 1.41539 1.41606

Alpha virt. eigenvalues -- 1.41838 1.42187 1.43238 1.46765 1.48490

Alpha virt. eigenvalues -- 1.48741 1.50631 1.50749 1.52646 1.52723

Alpha virt. eigenvalues -- 1.54347 1.54555 1.56152 1.56336 1.57797

Alpha virt. eigenvalues -- 1.58114 1.58354 1.62391 1.63842 1.63949

Alpha virt. eigenvalues -- 1.66192 1.66798 1.67650 1.68666 1.68744

Alpha virt. eigenvalues -- 1.69066 1.70971 1.71058 1.71400 1.71428

Alpha virt. eigenvalues -- 1.72160 1.72177 1.72943 1.74188 1.74430

Alpha virt. eigenvalues -- 1.74602 1.74893 1.75002 1.75032 1.76460

Alpha virt. eigenvalues -- 1.76888 1.77212 1.77788 1.78629 1.78701

Alpha virt. eigenvalues -- 1.79638 1.80819 1.81703 1.82048 1.82210

Alpha virt. eigenvalues -- 1.82414 1.82552 1.82963 1.83912 1.84031

Alpha virt. eigenvalues -- 1.84749 1.84782 1.85927 1.86324 1.86758

Alpha virt. eigenvalues -- 1.86807 1.88050 1.88475 1.89179 1.89346

Alpha virt. eigenvalues -- 1.90645 1.91090 1.92257 1.92347 1.92450

Alpha virt. eigenvalues -- 1.93891 1.94110 1.94677 1.95529 1.95799

Alpha virt. eigenvalues -- 1.95890 1.97554 1.97708 1.98196 1.98258

Alpha virt. eigenvalues -- 1.98387 1.98703 1.98718 1.99279 1.99809

Alpha virt. eigenvalues -- 1.99968 2.00116 2.00532 2.01170 2.01284

Alpha virt. eigenvalues -- 2.02628 2.03186 2.05244 2.05753 2.06622

Alpha virt. eigenvalues -- 2.06680 2.08437 2.11666 2.11675 2.12258

Alpha virt. eigenvalues -- 2.12276 2.16804 2.16953 2.17002 2.18926

Alpha virt. eigenvalues -- 2.19045 2.19180 2.19524 2.20097 2.20960

Alpha virt. eigenvalues -- 2.21302 2.21618 2.21780 2.22181 2.22275

Alpha virt. eigenvalues -- 2.22867 2.22926 2.24492 2.24548 2.24575

Alpha virt. eigenvalues -- 2.25139 2.25180 2.25488 2.28626 2.28688

Alpha virt. eigenvalues -- 2.28864 2.29248 2.29374 2.30275 2.31721

Alpha virt. eigenvalues -- 2.31800 2.32335 2.32374 2.33556 2.34745

Alpha virt. eigenvalues -- 2.37233 2.37443 2.38323 2.38339 2.38438

Alpha virt. eigenvalues -- 2.39061 2.39174 2.39202 2.40439 2.41074

Alpha virt. eigenvalues -- 2.41267 2.41619 2.41837 2.41942 2.42276

Alpha virt. eigenvalues -- 2.42308 2.42361 2.43632 2.43770 2.48188

Alpha virt. eigenvalues -- 2.48466 2.48598 2.48625 2.48865 2.49226

Alpha virt. eigenvalues -- 2.49766 2.50037 2.50252 2.50866 2.50956

Alpha virt. eigenvalues -- 2.50982 2.51454 2.52452 2.52571 2.54278

Alpha virt. eigenvalues -- 2.55173 2.55416 2.55804 2.55893 2.57322

Alpha virt. eigenvalues -- 2.57645 2.59687 2.59806 2.59823 2.60634

Alpha virt. eigenvalues -- 2.60953 2.61432 2.61623 2.61730 2.62071

Alpha virt. eigenvalues -- 2.62183 2.62624 2.66071 2.67025 2.67581

Alpha virt. eigenvalues -- 2.67616 2.68301 2.68312 2.68486 2.68678

Alpha virt. eigenvalues -- 2.69083 2.69122 2.69557 2.69629 2.73603

Alpha virt. eigenvalues -- 2.73669 2.74694 2.75365 2.75899 2.76292

Alpha virt. eigenvalues -- 2.77073 2.77744 2.79872 2.79944 2.80038

Alpha virt. eigenvalues -- 2.80659 2.82353 2.84639 2.84703 2.84810

Alpha virt. eigenvalues -- 2.84855 2.86957 2.88837 2.88966 2.88997

Alpha virt. eigenvalues -- 2.89083 2.93649 2.95536 2.96177 2.97937

Alpha virt. eigenvalues -- 2.98190 2.98963 2.99716 3.01347 3.01624

Alpha virt. eigenvalues -- 3.05174 3.07859 3.07923 3.16767 3.17654

Alpha virt. eigenvalues -- 3.17723 3.18048 3.18982 3.19066 3.20153

Alpha virt. eigenvalues -- 3.21423 3.21577 3.22996 3.23226 3.23791

Alpha virt. eigenvalues -- 3.25757 3.25776 3.27436 3.27465 3.27558

Alpha virt. eigenvalues -- 3.27750 3.27794 3.30944 3.30974 3.33962

Alpha virt. eigenvalues -- 3.36574 3.36623 3.40757 3.42261 3.42314

Alpha virt. eigenvalues -- 3.43980 3.44031 3.46320 3.48921 3.48960

Alpha virt. eigenvalues -- 3.56091 3.67070 3.74248 3.77679 3.77722

Alpha virt. eigenvalues -- 3.84715 3.84751 3.90787 4.07366 4.08497

Alpha virt. eigenvalues -- 4.08520 4.10864 4.10874 4.11403 4.12925

Alpha virt. eigenvalues -- 4.15109 4.15122 4.15599 4.15994 4.16167

Alpha virt. eigenvalues -- 4.16202 4.16564 4.16593 4.20112 4.20145

Alpha virt. eigenvalues -- 4.21966 4.22018 4.22164 4.23637 4.29802

Alpha virt. eigenvalues -- 4.29849 4.32783 4.38490 4.38950 4.39015

Alpha virt. eigenvalues -- 4.39454 4.39473 4.40879 4.50649 4.50658

Alpha virt. eigenvalues -- 4.54761 4.54767 4.56107 4.67891 4.72036

Alpha virt. eigenvalues -- 4.78271 4.78301 4.95227 4.95259 5.12314

Condensed to atoms (all electrons):

Mulliken atomic charges:

1

1 C 0.033699

2 C 0.028438

3 C 0.032076

4 C 0.034475

5 C 0.026352

6 C 0.011969

7 C 0.008657

8 C 0.006736

9 C 0.011547

10 C 0.009457

11 C 0.007574

12 C 0.029204

13 C 0.032555

14 C 0.034402

15 C 0.026531

16 C 0.032372

17 C 0.032554

18 C 0.027104

19 C 0.033893

20 C 0.032477

21 C 0.028593

22 C 0.032359

23 C -0.167096

24 C -0.135628

25 C -0.166846

26 H 0.121240

27 H 0.125138

28 H 0.121353

29 C -0.168289

30 C -0.135674

31 C -0.168242

32 H 0.121741

33 H 0.124771

34 H 0.121595

35 C -0.167938

36 C -0.135518

37 C -0.167503

38 H 0.121449

39 H 0.125015

40 H 0.121401

41 C -0.166810

42 C -0.135855

43 C -0.166047

44 C 0.031289

45 C 0.033838

46 C -0.168387

47 C -0.135583

48 C -0.169103

49 H 0.121604

50 H 0.124995

51 H 0.121444

52 H 0.121270

53 H 0.125008

54 H 0.121187

55 C -0.167391

56 C -0.136005

57 C -0.167136

58 H 0.121531

59 H 0.124926

60 H 0.121234

Sum of Mulliken charges= 0.00000

Atomic charges with hydrogens summed into heavy atoms:

1

1 C 0.033699

2 C 0.028438

3 C 0.032076

4 C 0.034475

5 C 0.026352

6 C 0.011969

7 C 0.008657

8 C 0.006736

9 C 0.011547

10 C 0.009457

11 C 0.007574

12 C 0.029204

13 C 0.032555

14 C 0.034402

15 C 0.026531

16 C 0.032372

17 C 0.032554

18 C 0.027104

19 C 0.033893

20 C 0.032477

21 C 0.028593

22 C 0.032359

23 C -0.045743

24 C -0.010491

25 C -0.045606

26 H 0.000000

27 H 0.000000

28 H 0.000000

29 C -0.046695

30 C -0.010902

31 C -0.046501

32 H 0.000000

33 H 0.000000

34 H 0.000000

35 C -0.046538

36 C -0.010503

37 C -0.046054

38 H 0.000000

39 H 0.000000

40 H 0.000000

41 C -0.045623

42 C -0.010847

43 C -0.044778

44 C 0.031289

45 C 0.033838

46 C -0.046944

47 C -0.010589

48 C -0.047499

49 H 0.000000

50 H 0.000000

51 H 0.000000

52 H 0.000000

53 H 0.000000

54 H 0.000000

55 C -0.046157

56 C -0.011079

57 C -0.045606

58 H 0.000000

59 H 0.000000

60 H 0.000000

Sum of Mulliken charges= 0.00000

Electronic spatial extent (au): <R**2>= 18845.4001

Charge= 0.0000 electrons

Dipole moment (field-independent basis, Debye):

X= -0.0010 Y= 0.0057 Z= 0.0132 Tot= 0.0144

Quadrupole moment (field-independent basis, Debye-Ang):

XX= -194.3761 YY= -194.4108 ZZ= -244.5363

XY= 0.0088 XZ= 0.0103 YZ= 0.0018

Traceless Quadrupole moment (field-independent basis, Debye-Ang):

XX= 16.7316 YY= 16.6969 ZZ= -33.4286

XY= 0.0088 XZ= 0.0103 YZ= 0.0018

Octapole moment (field-independent basis, Debye-Ang**2):

XXX= -0.1369 YYY= 0.5730 ZZZ= 0.0102 XYY= -0.0932

XXY= 0.0797 XXZ= -11.4345 XZZ= 0.1015 YZZ= -0.2370

YYZ= 12.4589 XYZ= 0.0594

Hexadecapole moment (field-independent basis, Debye-Ang**3):

XXXX=-11358.8940 YYYY=-11361.9140 ZZZZ= -275.2353 XXXY= 0.5878

XXXZ= -1.4788 YYYX= 1.2485 YYYZ= -5.7485 ZZZX= -0.0239

ZZZY= -0.0838 XXYY= -3783.3635 XXZZ= -2413.2122 YYZZ= -2410.5541

XXYZ= 6.0812 YYXZ= 2.0873 ZZXY= -0.9236

N-N= 4.380525029445D+03 E-N=-1.249236865784D+04 KE= 1.595743386235D+03

1\1\GINC-PENELOPE\SP\RB3PW91\6-31G(d,p)\C42H18\RSALCEDO\01-Feb-2007\0\

\# B3PW91/6-31G** SCF=DIRECT GEOM=(NODISTANCE,NOANGLE)\\Gaussian gener

ated by Cerius2\\0,1\C\C,1,1.421174\C,2,1.421726,1,119.387923\C,3,1.45

8134,2,119.690645,1,179.445107,0\C,4,1.42133,3,119.582729,2,3.155498,0

\C,5,1.444074,4,120.356312,3,-2.410483,0\C,2,1.443417,1,120.331141,3,-

179.52588,0\C,7,1.420296,2,120.007581,6,-179.689831,0\C,8,1.420269,7,1

19.974109,2,179.223474,0\C,9,1.419513,8,120.038096,7,-0.930584,0\C,6,1

.420336,5,120.01135,7,-179.134023,0\C,11,1.44386,6,120.026875,10,-179.

976339,0\C,12,1.421878,11,120.350639,6,-177.744896,0\C,13,1.458417,12,

119.619782,11,-1.013014,0\C,10,1.443653,9,119.983373,11,-179.51335,0\C

,15,1.421124,10,120.326681,14,-179.151133,0\C,16,1.457683,15,119.62832

6,10,-2.314759,0\C,9,1.444042,8,119.970467,10,178.88733,0\C,18,1.42185

3,9,120.322221,17,178.737033,0\C,19,1.457791,18,119.602132,9,3.592645,

0\C,8,1.442933,7,119.9985,9,-179.80037,0\C,1,1.458125,2,119.627185,3,-

177.91053,0\C,22,1.400286,1,121.221536,21,178.896354,0\C,23,1.385195,2

2,121.198513,1,-178.899696,0\C,20,1.399902,19,121.190949,21,178.853012

,0\H,25,1.082934,20,120.399897,24,179.207495,0\H,24,1.086481,23,120.04

7411,25,-179.998992,0\H,23,1.08331,22,120.457201,24,179.892582,0\C,19,

1.400213,18,119.177599,20,179.718545,0\C,29,1.384995,19,121.132515,18,

-0.613071,0\C,17,1.400279,16,121.20969,18,-179.442829,0\H,31,1.082958,

17,120.405321,30,-179.202842,0\H,30,1.086222,29,119.970855,31,-179.768

054,0\H,29,1.083429,19,120.410797,30,179.41793,0\C,16,1.399966,15,119.

21373,17,179.582065,0\C,35,1.385593,16,121.158244,15,1.007306,0\C,14,1

.399648,13,121.259788,15,-179.450104,0\H,37,1.083137,14,120.404263,36,

179.669782,0\H,36,1.085642,35,120.044257,37,-179.986245,0\H,35,1.08338

9,16,120.392245,36,-179.132963,0\C,13,1.399496,12,119.167688,14,-179.1

22682,0\C,41,1.384971,13,121.180148,12,0.015183,0\C,42,1.384717,41,119

.987457,13,0.044723,0\C,12,1.421992,11,120.273929,13,-179.947845,0\C,5

,1.422042,4,119.352855,6,-179.004115,0\C,45,1.40043,5,119.146802,44,17

9.842421,0\C,46,1.384951,45,121.172927,5,-0.517365,0\C,4,1.399454,3,12

1.205087,5,179.954631,0\H,48,1.083502,4,120.466365,47,-179.602519,0\H,

47,1.086272,46,120.009937,48,-179.62243,0\H,46,1.082449,45,120.439089,

47,179.828468,0\H,43,1.082638,42,118.406816,44,-179.524458,0\H,42,1.08

6957,41,120.001023,43,-179.976445,0\H,41,1.082989,13,120.446619,42,179

.566626,0\C,3,1.40018,2,119.154223,4,179.341722,0\C,55,1.38527,3,121.1

69955,2,0.481682,0\C,1,1.400051,2,119.18456,22,179.023299,0\H,57,1.082

637,1,120.494719,56,-179.922057,0\H,56,1.086151,55,120.02496,57,179.75

9631,0\H,55,1.083431,3,120.455139,56,-179.330904,0\\Version=x86-Linux-

G03RevB.05\State=1-A\HF=-1610.943469\RMSD=1.623e-05\Dipole=0.002022,0.

0051407,0.0012772\PG=C01 [X(C42H18)]\\@

IF YOU BELIEVE CERTAIN WORDS, YOU BELIEVE THEIR HIDDEN ARGUMENTS.

WHEN YOU BELIEVE SOMETHING IS RIGHT OR WRONG, TRUE OR FALSE,

YOU BELIEVE THE ASSUMPTIONS IN THE WORDS WHICH EXPRESS THE ARGUMENTS.

SUCH ASSUMPTIONS ARE OFTEN FULL OF HOLES, BUT REMAIN MOST PRECIOUS

TO THE CONVINCED.

-- THE OPEN-ENDED PROOF FROM THE PANOPLIA PROPHETICA

CHILDREN OF DUNE BY FRANK HERBERT

Job cpu time: 0 days 1 hours 47 minutes 26.6 seconds.

File lengths (MBytes): RWF= 281 Int= 0 D2E= 0 Chk= 29 Scr= 1

Normal termination of Gaussian 03 at Thu Feb 1 11:05:45 2007.