44
High-Spin Binuclear Cyclopentadienyliron Chlorides: A Density Functional Theory Study
Congzhi Wang,a,b Xiuhui Zhang,*a Yang Bai,a Fengxin Gao,a and Qianshu Li*c,d
aKey Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China
E-mail:
bNuclear Energy Nano-Chemistry Group, Key Laboratory of Nuclear Analytical Techniques and Key Laboratory For Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
cInstitute of Chemical Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
E-mail:
dMOE Key Laboratory of Theoretical Chemistry of Environment, Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510006, P. R. China
Supporting Information
Figures S1-S7: The optimized structures for Cp2Fe2Cln (n =6-1) indicating the relative energies (∆E, in kcal/mol) by the BP86 method.
Tables S1-S7: Total energies after zero point energy (ZPE) corrections (EZPE, in Hartree), number of imaginary vibrational frequencies (Nimag) and spin expectation values áS2ñ for the optimized Cp2Fe2Cln (n =6-1) structures.
Table S8 The dissociation energies (kcal/mol) including zero-point vibrational energy (ZPVE) corrections for Cp2Fe2Cln → Cp2Fe2Cln-1+ 1⁄2 Cl2 by the BP86 method
Table S9 The dissociation energies (kcal/mol) including ZPVE corrections of the disproportionation reactions for the Cp2Fe2Cln derivatives by the BP86 method
Table S10 The Gibbs free energy changes (kcal/mol) including ZPVE corrections and thermal corrections for Cp2Fe2Cln-2 + Cl2 → Cp2Fe2Cln by the BP86 method
Tables S11-S17: The theoretical harmonic vibrational frequencies for the 24 structures of Cp2Fe2Cln (n =6-1) using the BP86 method.
Tables S18 -S41: Theoretical Cartesian coordinates for the 24 structures of Cp2Fe2Cln (n =6-1) using the B3LYP method.
Complete Gaussian 03 reference (Reference 41)
Figures S1: The optimized structures for Cp2Fe2Cl6 indicating the relative energies (∆E, in kcal/mol) by the BP86 method. The distances are given in Å. The subsequent Figures have the same arrangement.
Figures S2: The optimized structures for Cp2Fe2Cl5 by the BP86 method.
Figures S3: The optimized structures for Cp2Fe2Cl4 by the BP86 method.
Figures S4: The optimized structures for the quartet and doublet Cp2Fe2Cl3 by the BP86 method.
Figures S5: The optimized structures for the sextet Cp2Fe2Cl3 by the BP86 method.
Figures S6: The optimized structures for Cp2Fe2Cl2 by the BP86 method.
Figures S7: The optimized structures for Cp2Fe2Cl by the BP86 method.
Table S1. Total energies after zero point energy (ZPE) corrections (EZPE, in Hartree), number of imaginary vibrational frequencies (Nimag), and spin expectation values áS2ñ for the Cp2Fe2Cl6 structures.
6Cl-1T (C1) / 6Cl-1S (Cs) / 6Cl-2S (C2v)B3LYP / EZPE / -5675.68643 / -5675.66054 / -5675.64081
Nimag / 0 / 0 / 0
áS2ñ / 2.23 / 0.00 / 0.00
MPW1PW91 / EZPE / -5675.75685 / -5675.72969 / -5675.70790
Nimag / 0 / 0 / 0
áS2ñ / 2.30 / 0.00 / 0.00
BP86 / EZPE / -5676.30149 / -5676.29043 / -5676.27485
Nimag / 0 / 0 / 0
áS2ñ / 2.05 / 0.00 / 0.00
Table S2. Total energies after ZPE corrections (EZPE, in Hartree), number of imaginary vibrational frequencies (Nimag), and spin expectation values áS2ñ for the Cp2Fe2Cl5 structures.
5Cl-1Q (C2) / 5Cl-2Q (Cs) / 5Cl-1D (C1)B3LYP / EZPE / -5215.53810 / -5215.52104 / -5215.54950
Nimag / 0 / 1(18i) / 0
áS2ñ / 3.99 / 3.91 / 2.07
MPW1PW91 / EZPE / -5215.60176 / -5215.58371 / -5215.59441
Nimag / 0 / 1(22i) / 0
áS2ñ / 4.05 / 3.93 / 1.84
BP86 / EZPE / -5216.11822 / -5216.09895 / -5216.11411
Nimag / 0 / 1(19i) / 0
áS2ñ / 3.81 / 3.81 / 2.05
Table S3. Total energies after ZPE corrections (EZPE, in Hartree), number of imaginary vibrational frequencies (Nimag), and spin expectation values áS2ñ for the Cp2Fe2Cl4 structures.
4Cl-1T (Cs) / 4Cl-2T (C2v) / 4Cl-1S (C2h) / 4Cl-2S (C2)B3LYP / EZPE / -4755.37504 / -4755.36326 / -4755.30514 / -4755.29473
Nimag / 0 / 0 / 0 / 0
áS2ñ / 2.09 / 2.09 / 0.00 / 0.00
MPW1PW91 / EZPE / -4755.43369 / -4755.42689 / -4755.36278 / -4755.34588
Nimag / 0 / 0 / 0 / 0
áS2ñ / 2.18 / 2.12 / 0.00 / 0.00
BP86 / EZPE / -4755.89472 / -4755.88423 / -4755.86819 / -4755.86286
Nimag / 0 / 0 / 1(9i) / 0
áS2ñ / 2.03 / 2.03 / 0.00 / 0.00
Table S45. Total energies after ZPE corrections (EZPE, in Hartree), number of imaginary vibrational frequencies (Nimag), and spin expectation values áS2ñ for the Cp2Fe2Cl3 structures.
3Cl-1Q (C1) / 3Cl-2Q (C2) / 3Cl-3Q (Cs) / 3Cl-1D (C2)B3LYP / EZPE / -4295.18615 / -4295.14985 / -4295.12906 / -4295.13436
Nimag / 0 / 0 / 1(21i) / 0
áS2ñ / 4.82 / 4.08 / 4.00 / 1.72
MPW1PW91 / EZPE / -4295.25504 / -4295.20966 / -4295.18264 / -4295.19168
Nimag / 0 / 0 / 1(49i) / 1(102i)
áS2ñ / 4.84 / 4.14 / 4.05 / 1.86
BP86 / EZPE / -4295.64426 / -4295.64117 / -4295.61575 / -4295.63750
Nimag / 0 / 0 / 1(20i) / 0
áS2ñ / 4.53 / 3.84 / 3.83 / 1.16
Table S5. Total energies after ZPE corrections (EZPE, in Hartree), number of imaginary vibrational frequencies (Nimag), and spin expectation values áS2ñ for the sextet Cp2Fe2Cl3 structures.
3Cl-1SE (C1/C1/C2) / 3Cl-2SE (Cs) / 3Cl-3SE (Cs)B3LYP / EZPE / -4295.17554 / -4295.14813 / -4295.11603
Nimag / 0 / 1(75i) / 1(54i)
áS2ñ / 9.04 / 8.95 / 9.59
MPW1PW91 / EZPE / -4295.24038 / -4295.14096 / -4295.17623
Nimag / 0 / 0 / 1(64i)
áS2ñ / 9.10 / 9.72 / 9.74
BP86 / EZPE / -4295.64281 / -4295.62125 / -4295.61045
Nimag / 0 / 0 / 0
áS2ñ / 8.84 / 8.83 / 8.86
Table S6. Total energies after ZPE corrections (EZPE, in Hartree), number of imaginary vibrational frequencies (Nimag), and spin expectation values áS2ñ for the Cp2Fe2Cl2 structures.
2Cl-1T (C2) / 2Cl-1S (C2v) / 2Cl-2S (C2)B3LYP / EZPE / -3834.92352 / -3834.91047 / -3834.86490
Nimag / 1(8i)a / 0 / 0
áS2ñ / 2.12 / 0.00 / 0.00
MPW1PW91 / EZPE / -3834.97524 / -3834.95995 / -3834.91266
Nimag / 0 / 0 / 0
áS2ñ / 2.20 / 0.00 / 0.00
BP86 / EZPE / -3835.39327 / -3835.39302 / -3835.35396
Nimag / 1(10i)a / 0 / 0
áS2ñ / 2.04 / 0.00 / 0.00
a When the finer grid (Grid=120, 974) is used, the imaginary vibrational frequencies disappeared.
Table S7. Total energies after ZPE corrections (EZPE, in Hartree), number of imaginary vibrational frequencies (Nimag), and spin expectation values áS2ñ for the Cp2Fe2Cl structures.
1Cl-1SE (C1) / 1Cl-2SE (C2) / 1Cl-1Q (C2) / 1Cl-2Q (C2v)B3LYP / EZPE / -3374.68993 / -3374.67320 / -3374.65330 / -3374.62656
Nimag / 0 / 0 / 0 / 1(58i)
áS2ñ / 8.88 / 8.90 / 4.31 / 3.94
MPW1PW91 / EZPE / -3374.74068 / -3374.71772 / -3374.69220 / -3374.67219
Nimag / 0 / 0 / 0 / 1(80i)
áS2ñ / 8.91 / 8.91 / 4.62 / 4.07
BP86 / EZPE / -3375.10704 / -3375.09892 / -3375.10198 / -3375.08716
Nimag / 0 / 1(4i)a / 0 / 0
áS2ñ / 8.83 / 8.82 / 3.80 / 3.81
a When the finer grid (Grid=120, 974) is used, the imaginary vibrational frequencies disappeared.
Table S8 The dissociation energies (kcal/mol) including zero-point vibrational energy (ZPVE) corrections for Cp2Fe2Cln → Cp2Fe2Cln-1+ 1⁄2 Cl2 by the BP86 method
Reactions / BP86Cp2Fe2Cl6 (6Cl-1T) → Cp2Fe2Cl5 (5Cl-1Q) + 1⁄2 Cl2 / –10.1
Cp2Fe2Cl5 (5Cl-1Q) → Cp2Fe2Cl4 (4Cl-1T) + 1⁄2 Cl2 / 15.2
Cp2Fe2Cl4 (4Cl-1T) → Cp2Fe2Cl3 (3Cl-1Q) + 1⁄2 Cl2 / 32.1
Cp2Fe2Cl3 (3Cl-1Q) → Cp2Fe2Cl2 (2Cl-1T) + 1⁄2 Cl2 / 32.4
Cp2Fe2Cl2 (2Cl-1T) → Cp2Fe2Cl (1Cl-1SE) + 1⁄2 Cl2 / 54.5
Table S9 The dissociation energies (kcal/mol) including ZPVE corrections of the disproportionation reactions for the Cp2Fe2Cln derivatives by the BP86 method
Reactions / BP862Cp2Fe2Cl5 (5Cl-1Q) → Cp2Fe2Cl6 (6Cl-1T) + Cp2Fe2Cl4 (4Cl-1T) / 25.2
2Cp2Fe2Cl4 (4Cl-1T) → Cp2Fe2Cl5 (5Cl-1Q) + Cp2Fe2Cl3 (3Cl-1Q) / 16.9
2Cp2Fe2Cl3 (3Cl-1Q) → Cp2Fe2Cl4 (4Cl-1T) + Cp2Fe2Cl2 (2Cl-1T) / 0.3
2Cp2Fe2Cl2 (2Cl-1T) → Cp2Fe2Cl3 (3Cl-1Q) + Cp2Fe2Cl (1Cl-1SE) / 22.1
Table S10 The Gibbs free energy changes (kcal/mol) including ZPVE corrections and thermal corrections for Cp2Fe2Cln-2 + Cl2 → Cp2Fe2Cln by the BP86 method
Reactions / BP86Cp2Fe2Cl (1Cl-1SE)+ Cl2 → Cp2Fe2Cl3 (3Cl-1Q) / –76.5
Cp2Fe2Cl2 (2Cl-1T) + Cl2 → Cp2Fe2Cl4 (4Cl-1T) / –56.8
Cp2Fe2Cl3 (3Cl-1Q) + Cl2 → Cp2Fe2Cl5(5Cl-1Q) / –35.2
Cp2Fe2Cl4 (4Cl-1T) + Cl2 → Cp2Fe2Cl6 (6Cl-1T) / 6.4
Table S11. Theoretical harmonic vibrational frequencies (in cm–1) for the structures of Cp2Fe2Cl6 by the BP86 method (infrared intensities in parentheses are in km/mol).
6Cl-1T (C1) / 6Cl-1S (Cs) / 6Cl-2S (C2v)32.0 (a, 0.8) / 27.5 (a", 1.3) / 23.7 (a2, 0.0)
34.2 (a, 0.2) / 34.5 (a", 1.4) / 32.5 (a2, 0.0)
36.3 (a, 0.4) / 55.6 (a", 1.1) / 65.9 (a1, 0.0)
49.8 (a, 2.0) / 69.5 (a', 4.6) / 70.2 (b1, 0.0)
59.6 (a, 3.5) / 75.8 (a", 0.1) / 88.9 (b1, 0.1)
83.3 (a, 0.3) / 94.9 (a", 0.7) / 92.1 (b1, 2.1)
91.0 (a, 0.9) / 117.7 (a', 1.3) / 114.1 (a1, 0.2)
100.1 (a, 0.4) / 136.5 (a', 1.1) / 117.3 (a2, 0.0)
122.5 (a, 2.3) / 153.3 (a", 2.3) / 136.5 (b2, 7.6)
143.9 (a, 0.2) / 172.9 (a', 2.3) / 167.0 (a1, 0.0)
154.3 (a, 0.2) / 177.9 (a', 0.0) / 172.0 (b2, 9.9)
162.1 (a, 0.6) / 182.0 (a", 0.0) / 183.9 (b1, 0.6)
179.3 (a, 1.5) / 193.2 (a", 0.2) / 193.4 (a1, 2.4)
182.1 (a, 2.8) / 207.7 (a', 2.5) / 193.5 (a2, 0.0)
194.9 (a, 0.2) / 219.1 (a', 10.9) / 211.9 (b2, 0.1)
201.9 (a, 1.3) / 221.5 (a', 4.7) / 214.6 (a1, 1.1)
219.8 (a, 5.5) / 223.2 (a", 0.1) / 223.4 (a2, 0.0)
223.3 (a, 7.6) / 229.3 (a", 10.8) / 236.3 (b1, 8.9)
250.8 (a, 3.0) / 260.2 (a', 3.9) / 248.4 (b2, 0.0)
266.9 (a, 14.2) / 270.5 (a", 9.1) / 277.3 (b1, 13.5)
276.9 (a, 10.2) / 286.2 (a', 7.3) / 286.7 (a2, 0.0)
286.4 (a, 5.5) / 289.4 (a", 5.1) / 289.1 (a1, 9.3)
289.5 (a, 3.9) / 291.9 (a', 6.1) / 292.0 (a1, 6.3)
296.3 (a, 14.7) / 298.3 (a', 21.5) / 294.5 (b2, 20.1)
327.0 (a, 13.4) / 353.8 (a', 2.6) / 351.1 (b2, 0.0)
346.0 (a, 0.9) / 355.7 (a", 1.0) / 352.9 (a2, 0.0)
358.4 (a, 0.6) / 358.9 (a', 0.9) / 353.3 (a1, 3.2)
367.7 (a, 13.8) / 366.2 (a", 0.2) / 361.0 (b1, 0.8)
401.1 (a, 17.0) / 391.4 (a', 6.0) / 391.8 (a1, 1.4)
404.4 (a, 22.1) / 397.5 (a', 1.8) / 391.8 (b2, 20.2)
536.7 (a, 2.7) / 547.6 (a", 0.4) / 547.5 (a2, 0.0)
545.0 (a, 1.4) / 549.2 (a', 0.7) / 549.0 (b1, 1.1)
549.9 (a, 2.4) / 553.5 (a", 0.4) / 553.3 (a1, 0.0)
551.9 (a, 0.5) / 553.9 (a', 0.9) / 553.7 (b2, 2.0)
797.7 (a, 3.0) / 803.4 (a", 1.3) / 796.1 (b2, 66.1)
802.9 (a, 87.0) / 805.4 (a', 2.6) / 804.4 (b2, 3.3)
803.9 (a, 20.8) / 806.5 (a", 0.0) / 804.5 (a1, 23.8)
805.3 (a, 5.8) / 808.4 (a', 0.7) / 807.4 (a1, 69.6)
808.5 (a, 22.2) / 812.4 (a', 97.7) / 807.5 (a2, 0.0)
811.7 (a, 38.6) / 822.6 (a', 76.0) / 811.3 (b1, 0.1)
834.3 (a, 12.9) / 850.5 (a', 9.3) / 831.0 (a2, 0.0)
836.0 (a, 9.6) / 850.9 (a", 6.1) / 835.1 (b2, 23.0)
851.1 (a, 6.7) / 856.4 (a", 3.8) / 836.2 (b1, 12.0)
856.5 (a, 6.2) / 872.2 (a', 9.9) / 841.4 (a1, 4.7)
885.7 (a, 1.6) / 897.8 (a', 0.4) / 877.2 (b2, 0.3)
900.0 (a, 2.0) / 899.5 (a", 0.0) / 879.8 (a1, 0.8)
902.8 (a, 0.6) / 912.8 (a', 16.5) / 883.6 (a2, 0.0)
941.0 (a, 4.2) / 961.7 (a", 4.6) / 899.0 (b1, 1.6)
988.2 (a, 3.6) / 999.1 (a', 3.9) / 995.0 (b2, 4.6)
994.8 (a, 4.4) / 1000.3 (a", 6.1) / 998.7 (a2, 0.0)
999.9 (a, 3.6) / 1001.1 (a", 2.7) / 1000.7 (a1, 1.7)
1008.3 (a, 5.3) / 1004.2 (a', 3.9) / 1008.3 (b1, 13.8)
1043.2 (a, 1.4) / 1049.1 (a", 0.2) / 1040.6 (b2, 1.1)
1048.8 (a, 0.1) / 1050.0 (a", 0.0) / 1048.3 (a2, 0.0)
1055.3 (a, 0.0) / 1056.6 (a', 0.2) / 1051.7 (b1, 0.0)
1058.6 (a, 2.6) / 1063.7 (a', 1.2) / 1063.8 (a1, 2.1)
1108.7 (a, 4.9) / 1113.5 (a', 0.8) / 1116.4 (b2, 2.1)
1113.1 (a, 1.7) / 1114.7 (a', 0.6) / 1117.5 (a1, 3.1)
1230.3 (a, 0.0) / 1232.4 (a", 0.0) / 1227.3 (a2, 0.0)
1235.3 (a, 0.0) / 1234.4 (a", 0.0) / 1235.5 (b1, 0.1)
1349.7 (a, 7.4) / 1363.9 (a", 0.0) / 1367.5 (a2, 0.0)
1357.8 (a, 2.0) / 1365.6 (a", 0.1) / 1368.7 (b1, 0.0)
1366.1 (a, 0.8) / 1370.6 (a', 0.4) / 1373.0 (b2, 1.7)
1369.5 (a, 0.9) / 1372.6 (a', 0.2) / 1374.4 (a1, 3.0)
1404.8 (a, 11.3) / 1409.3 (a", 11.6) / 1409.2 (a2, 0.0)
1406.1 (a, 20.2) / 1411.2 (a", 16.3) / 1412.1 (b2, 17.8)
1412.4 (a, 15.7) / 1411.4 (a', 10.6) / 1414.2 (b1, 26.9)
1419.9 (a, 10.9) / 1412.0 (a', 20.0) / 1416.7 (a1, 0.7)
3110.4 (a, 6.4) / 3141.1 (a", 0.7) / 3187.4 (b1, 3.2)
3170.2 (a, 3.4) / 3150.2 (a', 18.4) / 3188.3 (a2, 0.0)
3184.3 (a, 0.7) / 3180.0 (a', 0.4) / 3191.8 (b2, 0.8)
3186.4 (a, 1.2) / 3184.4 (a", 1.5) / 3192.0 (a1, 0.6)
3193.8 (a, 0.7) / 3190.1 (a', 1.7) / 3200.4 (b2, 3.9)
3194.3 (a, 4.4) / 3193.9 (a', 2.8) / 3201.0 (a1, 0.1)
3201.8 (a, 2.2) / 3198.7 (a", 4.6) / 3202.2 (b1, 7.7)
3201.9 (a, 6.0) / 3200.2 (a", 3.4) / 3202.3 (a2, 0.0)
3206.9 (a, 6.9) / 3204.6 (a', 3.1) / 3209.9 (b2, 9.3)
3212.2 (a, 1.0) / 3210.5 (a', 4.3) / 3210.0 (a1, 2.3)
Table S12. Theoretical harmonic vibrational frequencies (in cm–1) for the structures of Cp2Fe2Cl5 by the BP86 method (infrared intensities in parentheses are in km/mol).