MOLECULAR GENETICS
Biology 442
Objectives: The fast pace of modern molecular genetics research is driven by major challenges in medicine, agriculture, and industry; and, ultimately, by intellectual curiosity. There is intense public interest in the human genome project and genetic engineering, due in part to fascination with how our own genes influence our lives. The primary objective of this course is to provide students with an advanced understanding and appreciation of current topics in molecular genetics, while developing skills in critical thinking and written expression. A central theme of the course will be the continuum of biological understanding, starting with basic properties of genes and genomes and extending to the complex, hierarchical interactions fundamental to living organisms. A comprehensive picture of the many ways molecular genetics is being applied to the analysis of complex systems will be developed, including advances that reveal fundamental features of gene regulation during cell growth and differentiation, and in response to a changing environment, as well as developments that are more related to commercial and medical applications. Recent advances in technology, the process and thrill of discovery, and ethical considerations in molecular genetics research will be emphasized.
Grading: The final grade will be based on two in-class exams, one written assignment, and a final examination. The exams will be in short answer format. Exam I will be worth 20%, Exam II and the written assignment worth 25% each, and the final examination worth 30% of the course grade.
Lecture Topics
Lecture 1 Overview of course. The beginnings of molecular biology
Lectures 2, 3 The structure of DNA
Lecture 4 Genome organization: From nucleotides to chromatin
Lectures 5, 6 The versatility of RNA
Lectures 7, 8 From gene to protein: The genetic code and protein structure
Lectures 9, 10 DNA replication
Lecture 11 Telomere maintenance
Lectures 12, 13 DNA repair and recombination
Lectures 14, 15, 16 Recombinant DNA technology, molecular cloning, & some tools
for analyzing gene expression
EXAM 1 (covering material in Lectures 2–14)
Lectures 17, 18 Transcription in prokaryotes
Lectures 19, 20, 21, 22 Transcription in eukaryotes
Lectures 23, 24, 25, 26 Epigenetics and monoallelic gene expression
EXAM 2 (covering material in Lectures 15–26)
Lectures 27, 28, 29, 30 RNA processing and post-transcriptional gene regulation
Lectures 31, 32 Mechanisms of translation
Lecture 33 Genetically modified organisms: Use in basic and applied research
Lecture 34 Genome analysis: DNA typing
Lecture 35 Genome analysis: Genomics and beyond
WRITTEN ASSIGNMENTS DUE
Lectures 36, 37 Medical molecular biology: Cancer
Lecture 38 Medical molecular biology: Gene therapy
Lecture 39 Genes and behavior
FINAL EXAM (Comprehensive section worth 10% of final grade, section
specifically covering Lectures 27–39 worth 20% of final grade)