COVENANT UNIVERSITY
COLLEGE OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF CHEMISTRY
COURSE CODE: CHM 121
COURSE TITLE: General Organic Chemistry
UNITS: 2
SEMESTER: Omega- 2014/2015
COURSE LECTURERS: Dr. Ajani, O.O (Coordinator)
Dr. Mordi, R.C
Dr. Olugbuyiro, J.A.O
Time: Tuesday 12noon -2 p.m
Location: Lecture Theater 1
COURSE DESCRIPTION
This course gives introduction to organic chemistry and its importance. It reflects on qualitative and quantitative analyses of organic compounds. It reviews the principles of structure and bonding that will be useful as you learn about the chemistry of carbon compounds. This lecture uses the families of hydrocarbons known as alkanes, alkenes and alkynesto introduce the concepts of structure and nomenclature in organic chemistry. The course introduces other functional groups in organic chemistry.
COURSE OBJECTIVES
The skills you will learn in this lecture should enable you to:
- Explain the various purification techniques used for organic compounds
- Calculate the empirical formula and molecular formula of an organic compound from the data of the quantitative analysis
- Describe the difference between ionic and covalent bonding
- Understand the sp3,sp2, sp orbital hybridization bonding models
- Explain homologous series
- Identify functional groups in a given organic compounds
- Explain the term isomerism, understand the difference between constitutional isomers and stereoisomers
- Recognize the hydrocarbon families, functionally substituted derivatives of alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, monocarboxylic acids, amines, amides and classes of compounds containing the carbonyl group
- Give the IUPAC names of the classes of organic compounds
- Write structural formula for any organic compound, given the IUPAC name
- Write a chemical equation for the preparation of a typical class of organic compound
- State and write chemical equations for chemical rxns of alkanes, cycloalkanes, alkenes, alkynes, alcohols, aldehydes, ketones, amines, amides.
METHODS OF LECTURE DELIVERY/TEACHING AIDS
Lecture Delivery
Guided instruction
Demonstration and illustration
Class discussion
Class exercise
Home work
Teaching Aids
Lecture notes
White board
Electronic board
Overhead projector
E-learning: moodle
COURSE OUTLINE
Dr. Ajani, O.O
Module 1 Homologous series, Functional Groups and Isomerism
Week 1 Homologous series, identification, test and inter-conversion of functional groups, Isomerism
Module 2 Structure and Bonding
Week 2 Detection of elements, determination of structure of organic compounds
Ionic and covalent bonding; sp3 hybridization, sp2 and sp orbital hybridization, bonding in organic compounds
Module 3 Introduction, Purification and Isolation of Organic Compounds
Week 3 Purification techniques Qualitative; quantitative analyses of organic compounds, characterization of products
Dr. Olugbuyiro, J.A.O
Module 4 Hydrocarbons Families: Alkanes
Week 4 Alkanes –definition, nomenclature, preparation, properties & uses
Isomerism-constitutional isomers and stereoisomer
Cycloalkanes- nomenclature, preparation, properties& their derivatives
Module 5 Alkenes
Weeks5-6 Alkenes-definition, nomenclature, preparation
Alkenes- isomerism, properties and uses
Module 6 Alkynes
Week 7 Alkynes- definition, nomenclature, preparation, isomerism, properties and uses
Dr. Mordi, R.C
Module 7 Aromatics hydrocarbons, halo- alkanes; Alcohols, aldehydes & ketones; monocarboxylic acids and their derivatives
Week 8 Aromatics hydrocarbons, halo- alkanes:definition, nomenclature, preparation, properties & uses
Week 9 Mid Term Test
Week 10 Introduction to Alcohols, aldehydes & ketones:definition, nomenclature, preparation, properties & uses
Weeks 11-12 Introduction to monocarboxylic acids and their derivatives:definition, nomenclature, preparation, properties & uses
Week 13 Amines and amides
Week 14 Revision and Evaluation
METHOD OF GRADING
1. Continuous Assessment 30 marks
i) Assignment 10 marks
ii) Test 1 10 marks
iii) Test 2 10 marks
2. Examination 70marks
CLASS BEHAVIOUR
Please note the following:
Ø Compulsory 75% class attendance
Ø Eating and chewing are prohibited in the classroom
Ø All class assignments to be submitted promptly
Ø Pay attention to class work
Ø Active participation in all activities
Ø No Academic dishonesty - Plagiarism, Improper collaboration in group work,
copy or using unauthorized aids in tests and examinations
TOPICS FOR ASSIGNMENTS
1. In the qualitative test for the presence of sulphur in an organic sample, Lead sulphide is produced. What is its colour?
2. A mixture of naphthalene is mistakenly mixed with table salt. Which of these methods is best used to recover naphthalene?
(a) filtration (b) solvent extraction (c) sublimation (d) evaporation
3. A qualitative analysis of papaverine showed carbon, hydrogen and nitrogen. A quantitative analysis gave 70.8% C, 6.2% H and 4.1% N. Calculate the empirical formula of papaverine
(a) C21H20O4N (b) C20H21O4N (c) C10H10O4N (d) C21H20ON4
4. Combustion of 6.15mg of a compound gave 20.47mg of CO2 and 8.36mg of H2O. What is its molecular formula if its molecular mass is 84?
5.How many sigma (σ) and pi (π) bonds can you find in propyne?
6. Oxidation of Butan-1-ol in excess of acidified KMnO4 gives …….
7. Which of the following isomerisms will not occur within the same homologous series?
(a) Positional (b) functional group (c) chain (d) optical
8. In the qualitative test for the presence of sulphur in organic sample, lead sulphide is produced. What is its colour? (a) yellow (b) prussian blue (c) Black (d) Purple
9. The regioselectivity of dehydrohalogenation of alkyl halides follows the(a)Markovnikov’rule (b)Baeyer’s rule (c)Zaitsev rule (d) Syn stereochemistry
10. Gideon reacted propene with conc. H2SO4 then warmed the solution with dilute HCl to give final product of
(a) propane (b) chloropropane (c)propanol (d) propyne
COVENANT UNIVERSITY VISION/GOAL ALIGNMENT
The course promotes good academic mentality and gingers students towards systematic approach to issues as scientists.
CONTEMPORARY ISSUES/ INDUSTRY RELEVANCE
The course exposes students to the principles and importance of organic chemistry. Economic uses and industrial applications of the direct products and by-products of the notable chemical reactions are extolled.
RECOMMENDED READING
1. Principles of organic Chemistry, latest ed. Peter R.S. Murray, Heinemann, London
2. Introduction to Organic Chemistry, 4th ed. A. Streitwieser, C.H. Heathcock, C.H., E.M. Kosower QD251.2.S76 1992
3. Organic Chemistry, 5th ed. F.A. Carey, McGraw Hill, NY
3