Supplemental Table 1: Chemical and physical parameters of sample sites (range).

Range
Na (mg/L) / 9 - 50
Mg (mg/L) / 11 - 20
Ca (mg/L) / 37 - 128
Mn (mg/L) / 0.02 - 3.1
Fe, total (mg/L) / 0.16 - 0.39
Sr (g/L) / 103 - 460
Ba (g/L) / 41 - 179
DIC (mg/L) / 37 - 75
Cl- (mg/L) / 5 - 51
Conductivity (S/cm) / 334 - 1171
Turbidity (NTRU) / 3 - 25

Abbreviations of sites names: HC - Hinds Creek; EF - East Fork Poplar Creek; BC - Bear Creek; WC - White Oak Creek.

Supplemental Table 3: Most similar database sequences of Crenarchaeotal 16S rRNA gene to selected clusters.

Phylogenetic group / Cluster name (95%) / Closest database sequence (accession no.)a / Origen of sequence / %
Simi-larity / Refe-rence
Freshwater Group / 3 / Unc. archaeon ASC43 (AB161341) / Petroleum contaminated soil / 98 / [27]
Unc. Str6_K6 (AM055699) / Sulfidic marsh springs / 97 / [32]
Unc. crenarchaeote VAL81 (AJ131315) / Surface water - freshwater lake / 95 / [26]
18 / Unc. archaeon ASC25 (AB161328) / Petroleum contaminated soil / 98 / [27]
15 / Unc. archaeon ASC45 (AB161342) / Petroleum contaminated soil / 95 / [27]
Miscellaneous Crenarchaeota Group / 1 / Unc. archaeon LCDARCH116 (EU247286) / Heavy-metal contaminated river sediments / 100 / [51]
Unc. archaeon MH1492_B9G (EU155993) / Minerotrophic fen peatlands / 100 / [7]
Unc. crenarchaeote RPS-D5 (AB288602) / Rice paddy soil / 100 / [22]
Unc. archaeon Str6_K32 (AM055702) / Cold sulphidic marsh water / 100 / [32]
Unc. crenarchaeote GFS5-9500iii (AY601296) / Glacier foreland / 100 / [45]
Anaerobic methanogenic archaeon ET1-8 (AJ244284) / Rice field / 100 / [11]
Oryza sativa HARR23 (AJ699099) / Rice plants roots / 98 / [37]
Unc. crenarchaeote Arch_AE_E07 (FJ968098) / Sulfur-rich water rising from sedimentary rock / 100 / [9]
Unc. archaeon LCDARCH120 (EU247272) / Heavy-metal contaminated river sediments / 100 / [51]
Unid. crenarchaeote pGrfC26 (UCU59986) / Lake sediments / 100 / [19]
Anaerobic methanogenic archaeon ET1-10 (AJ244286) / Rice field / 98 / [11]
2 / Unc. archaeon OHKA13.26 (AB094558) / Volcanic ash layers from subseafloor sediments core / 99 / [21]
Unc. archaeon GAB-A09 (AB183856) / Geothermal aquifer from subsurface basin / 99 / [31]
Unc. archaeon LCDARCH92 (EU247244) / Heavy-metal contaminated river sediments / 98 / [51]
4 / Unc. archaeon Lc2yS22_ML_184 (FJ354874) / Water lake, after hurricanes Katrina and Rita / 97 / [1]
Unc. archaeon MCAr118 (FJ604786) / Cave water / 96 / [10]
Unc. archaeon 060329_T2S2_S_T_SDP_097 (FJ351282) / Water lake, after hurricanes Katrina and Rita / 97 / [1]
12 / Unc. archaeon MCAr234 (FJ604792) / Cave water / 96 / [10]
13 / Unc. crenarchaeote Arch_AE_F09 (FJ968102) / Sulfur-rich water rising from sedimentary rock / 100 / [9]
16 / Unc. archaeon D64AR30R4 (AM778303) / Rice plant residues / 99 / [49]
20 / Unc. archaeon 060329_T2S4_S_T_SDP_364 (FJ352089) / Water lake, after hurricanes Katrina and Rita / 95 / [1]
23 / Unc. archaeon D64AR30R63 (AM778352) / Rice plant residues / 95 / [49]
17 / Unc. archaeon IH2-1b (AM270570) / Acidic fen soil / 90 / [60]
Group I3 / 5 / Unc archaeon IIO2-3a (AM270561) / Acidic fen soil / 99 / [60]
Unid. crenarchaeote VIARC-2 (AJ240005) / Sulforous lake water / 98 / [8]
Unc. archaeon 060329_T2S2_S_T_SDP_132 (FJ351274) / Water lake, after hurricanes Katrina and Rita / 97 / [1]
Rice Cluster VI / 14 / Unc. crenarchaeote ArcC-s_cB11 (EU307038) / Soil aggregates from saturated soils / 100 / [17]
Unc. archaeon clone ARC_JSC7-1 (DQ782360) / NASA spacecraft assembly facility / 100 / [43]
Unc. archaeon HL2 (AJ608192) / Soil near bank of river / 100 / [29]
Marine Group I / 7 / Unc. archaeon 670m_Arch6_0.5 16S (EU817644) / Sea water, Gyre, 670 m deep / 95 / [18]
Unc. archaeon 33-FL23A00 (AF355829) / Hyrdothermal vents / 95 / [20]
Unc. marine crenarchaeote SAT1000-21-C11 (EU686646) / South Atlantic ocean, 1000 deep / 95 / [40]
Unc. crenarchaeote BS5_62m_MG1-32 (EF155589) / Cold sulfidic water from suboxic zone / 95 / [12]
8 / Unc. crenarchaeote Arch_AE_A10 (FJ968081) / Sulfur-rich water rising from sedimentary rock / 100 / [9]
Unc. archaeon Str6_A1 (AM055706) / Marsh sulfidic springs / 100 / [32]
Nitrosopumilus maritimus SCM1 (DQ085097) / Tropical seawater tank substratum at Aquarium / 94 / [33]
Unc. crenarchaeote JG35-TR-Ar14 (FM897359) / Uranium contaminated soil / 100 / -
Unid. archaeon LMA229 (U87519) / Lake sediment / 100 / [39]
Unc. archaeon ASC30 (AB161332 / Petroleum-contaminated soil / 100 / [27]
9 / Unc. archaeon L7S16_ML_147 (FJ354261) / Water street canal, after hurricanes Katrina and Rita / 99 / [1]
Unc. crenarchaeote CBS16S3-2-29 (EF450812) / Agricultural soil / 99 / [57]
Rice Cluster IV / 11 / Unc. archaeon CN2-8 (EF614357) / Ovine rumen / 97 / [46]
Crenarchaeotal sp. pJP 41 (CNBRG16SB) / Hot spring sediments / 95 / [2]
Unc. archaeon D64AR30R12 (AM778311) / Rice plant residues / 97 / [49]
Marine Benthic Group B / 10 / Unc. crenarchaeote F31 (EU910616) / Lake sediments / 98 / -
Unc. crenarchaeote ED1-37 (EU332082) / Marine sediments / 95 / [47]

a. Unc. - uncultured. Unid. -Unidentified

Supplemental Table 4: Most similar database sequences of Euryarchaeotal 16S rRNA gene to selected clusters.

Phylogenetic group / Cluster name (95%) / Closest database sequence (accession no.)a / Origen of sequence / %
Simi-larity / Refe-rence
Methanomicrobiales / 30 / Unc. methanomicrobiaceae archaeon LDS16 (AY133903) / Lake sediments / 99 / [15]
Candidatus Methanoregula boonei strain SN14 (EU887821) / Acidic peatlands / 96 / [5]
Methanosphaerula palustris strain E1-9c (EU156000) / Minerotrophic fen peatland / 95 / [7]
Unc. archaeon clone MH1492_1C 16S (EU155975) / Minerotrophic fen peatland / 100 / [7]
Unc. euryarchaeote VAL78 (AJ131269) / Surface water of freshwater forest lake / 99 / [26]
Unc. Methanomicrobiaceae archaeon D64AR30R16 (AM778314) / Rice plant residues / 100 / [49]
Unc. Methanomicrobia archaeon SP-ProM-A (AB236066) / Pond sediment / 100 / [55]
32 / Unc. Methanomicrobiales QEED1CB071 (CU917179) / Municipal wastewater sludge / 99 / [52]
Methanosarcinales / 27 / Unc. archaeon LCDARCH53 (EU247310) / River sediments / 100 / [51]
Unc. archaeon MH1492_1E (EU155958) / minerotrophic fen peatland / 100 / [7]
Unc. archaeon clone D-ARCH (DQ369741) / Anaerobic methane oxidation / denitrification reactor / 100 / [50]
Unc. archaeon clone CBd-461H (DQ301887) / Acidic peatland / 100 / [6]
26 / Unc. archaeon clone MH1492_4E 16S (EU155950) / Minerotrophic fen peatland / 100 / [7]
Unc. Methanosarcinales archaeon QEEC1AB061 (CU917434) / Municipal wastewater sludge / 100 / [52]
Methanosaeta concilii Opfikon (NR_028242) / Municipal wastewater sludge / 97 / [48]
28 / Methanosarcina acetivorans (MESRR16SA) / Marine sediments / 99 / [56]
Methanolobus profundi (AB370245) / Subsurface of natural gas field / 98 / [42]
64 / Methanomethylovorans hollandica strain ZB (AY260433) / Freshwater sediments / 99 / [36]
Methanobacteriales / 25 / Methanobacterium bryantii strain MOHG (AY196658) / Water from deep aquifer / 99 / [16]
Methanobacterium oryzae FPi (NR_028171) / Rice field / 98 / [25]
Methanobacterium subterraneum strain 9-7 (DQ649330) / Groundwater from deep granitic rock aquifers / 100 / [34]
Methanococcales / 36 / Methanococcus infernus 16S (AF025822) / Deep-sea hydrothermal vent / 98 / [23]
Thermococcales / 49 / Thermococcus kodakarensis KOD1 (NR_028216) / Sediments from solfatara / 99 / [44]
Rice Cluster III / 24 / Unc. Methanosarcinaceae archaeon (AM778236) / Rice plant residues / 100 / [49]
Archaeon LL25A10 / Soil from flooded riverbank / 100 / [29]
Unc. archaeon clone AS08-11 (AF225643) / Rice field / 99 / [38]
Unc. archaeon WCHD3-33 (AF050619) / Waste fuels and chlorinated solvents contaminated aquifer / 99 / [13]
Unc. euryarchaeote KuA16 (AB077226) / Oil-contaminated groundwater / 99 / [59]
44 / Unc. archaeon WCHD3-16 / Waste fuels and chlorinated solvents contaminated aquifer / 99 / [13]
Unc. archaeon ASN16 (AB161348) / Petroleum contaminated soil / 98 / [27]
67 / Unc. archaeon ASC8 (AB161324) / Petroleum contaminated soil / 99 / [27]
Marine Benthic Group D / 35 / Unc. archaeon MH1100_C3E (EU155985) / Minerotropic fen peatland / 99 / [7]
Unc. archaeon QLS458-A40 (EU110044) / Saline alkaline lake sediments / 99 / [24]
DeepSea / 53 / Unc. archaeon MCAr21 (FJ604784) / Cave water / 99 / [10]
Unc. archaeon 60329_T2S1_S_T_SDP_285 (FJ351234) / Water lake, after hurricanes Katrina and Rita / 98 / [1]
Eury 5 / 48 / Unc. archaeon LL_ADT_14 (AM503272) / Rice plants roots / 99 / -
58 / Unc. archaeon DALK16 (AJ631253) / Cold sulfidic march water / 93 / [54]
72 / Unc. euryarchaeote GNA02G06 (EU731250) / Hypersaline microbial mat / 89 / [53]
43 / Unc. euryarchaeote CN1 (AY940177) / Agriculture soils / 90 / [41]
54 / Unc. euryarchaeote MERTZ_21CM_297 (AF424536) / Antartic shelf sediments / 87 / [4]
50 / Unc. euryarchaeote ESYB68 (AB119624) / Estuarine sediment / 86 / [53]
74 / Unc. euryarchaeote GNA04A03 (EU731356) / Hypersaline microbial mat / 90 / [53]
60 / Unc. archaeon ss083b (AJ969772) / Saline soil from salty spring / 93 / [58]
55 / Unc. archaeon 060329_T6S4_W_T_SDP_076 (FJ352244) / Water lake, after hurricanes Katrina and Rita / 93 / [1]
45 / Uncultured euryarchaeote GNA03H12 (EU731107) / Hypersaline microbial mat / 88 / [53]
40 / Unc. archaeon 060329_T2S1_S_T_SDP_093 (FJ351030) / Water lake, after hurricanes Katrina and Rita / 97 / [1]
41 / Unid. euryarchaeote CIARC-3 / Hypersaline microbial mat / 94 / [53]
42 / Unc. euryarchaeote GNA03E04 (EU731358) / Hypersaline microbial mat / 95 / [53]
69 / Unc. euryarchaeote Nubeena78 (AY500128) / Marine sediment near to fish farms / 90 / [3]
33 / Unc. archaeon 060329_T2S1_S_T_SDP_307 (FJ351027) / Water lake, after hurricanes Katrina and Rita / 87 / [1]
63 / Unc. euryarchaeote MERTZ_2CM_136 (AF424529) / Antartic shelf sediments / 89 / [4]
68 / Unc. archaeon CaR3b.f12 (EU244296) / Water from artic shelf river / 98 / [14]
61 / Unc. euryarchaeote GNA01C06 (EU731323) / Hypersaline microbial mat / 85 / [53]
No classification / 52 / Unc. archaeon 060329_T2S1_S_T_SDP_246 (FJ351033) / Water lake, after hurricanes Katrina and Rita / 89 / [1]
75 / Unc. archaeon aEPR13S225 (EU259352) / Deep-sea sediment / 92 / [35]
247 / Unc. archaeon HSWK56 (AJ631247) / Cold sulfidic march water / 97 / [54]
31 / Unc. euryarchaeote VAL84 (AJ131270) / Surface water of freshwater forest lake / 97 / [26]
46 / Unc. archaeon SBAK-mid-46 (DQ640163) / Marine sediment / 87 / [30]
65 / Unc. archaeon FnvA91 (AB213085) / Fluids from hydrothermal fields / 93 / [28]

a. Unc. - uncultured. Unid. - Unidentified

1

References

1.Amaral-Zettler LA, Rocca JD, Lamontagne MG, Dennett MR, Gast RJ (2008) Changes in microbial community structure in the wake of Hurricanes Katrina and Rita. Environ Sci Technol 42: 9072-9078

2.Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A 91: 1609-1613

3.Bissett A, Bowman J, Burke C (2006) Bacterial diversity in organically-enriched fish farm sediments. FEMS Microbiol Ecol 55: 48-56

4.Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69: 2463-2483

5.Brauer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442: 192-194

6.Cadillo-Quiroz H, Brauer S, Yashiro E, Sun C, Yavitt J, Zinder S (2006) Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8: 1428-1440

7.Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2008) Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl Environ Microbiol 74: 2059-2068

8.Casamayor EO, Schafer H, Baneras L, Pedros-Alio C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66: 499-508

9.Chaudhary A, Haack SK, Duris JW, Marsh TL (2009) Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan. Appl Environ Microbiol 75: 5025-5036

10.Chen Y, Wu L, Boden R, Hillebrand A, Kumaresan D, Moussard H, Baciu M, Lu Y, Colin Murrell J (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 3: 1093-1104

11.Chin K, Lukow T, Stubner S, Conrad R (1999) Structure and function of the methanogenic archaeal community in stable cellulose-degrading enrichment cultures at two different temperatures (15 and 30 degrees C). FEMS Microbiol Ecol 30: 313-326

12.Coolen MJ, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MM, Wakeham SG, Sinninghe Damste JS (2007) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol 9: 1001-1016

13.Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64: 3869-3877

14.Galand PE, Lovejoy C, Pouliot J, Vincent WF (2008) Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem. J Marine Syst 74: 774-782

15.Glissman K, Chin KJ, Casper P, Conrad R (2004) Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microb Ecol 48: 389-399

16.Godsy EM (1980) Isolation of Methanobacterium bryantii from a Deep Aquifer by Using a Novel Broth-Antibiotic Disk Method. Appl Environ Microbiol 39: 1074-1075

17.Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74: 1620-1633

18.Hansman RL, Griffin S, Watson JT, Druffel ER, Ingalls AE, Pearson A, Aluwihare LI (2009) The radiocarbon signature of microorganisms in the mesopelagic ocean. Proc Natl Acad Sci U S A 106: 6513-6518

19.Hershberger KL, Barns SM, Reysenbach AL, Dawson SC, Pace NR (1996) Wide diversity of Crenarchaeota. Nature 384: 420

20.Huber JA, Butterfield DA, Baross JA (2002) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol 68: 1585-1594

21.Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of okhotsk. Appl Environ Microbiol 69: 7224-7235

22.Ishii S, Hotta Y, Watanabe K (2008) Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem 72: 286-294

23.Jeanthon C, L'Haridon S, Reysenbach AL, Vernet M, Messner P, Sleytr UB, Prieur D (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48 Pt 3: 913-919

24.Jiang H, Dong H, Yu B, Ye Q, Shen J, Rowe H, Zhang C (2008) Dominance of putative marine benthic Archaea in Qinghai Lake, north-western China. Environ Microbiol 10: 2355-2367

25.Joulian C, Patel BK, Ollivier B, Garcia JL, Roger PA (2000) Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. Int J Syst Evol Microbiol 50 Pt 2: 525-528

26.Jurgens G, Glockner F, Amann R, Saano A, Montonen L, Likolammi M, Munster U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization(1). FEMS Microbiol Ecol 34: 45-56

27.Kasai Y, Takahata Y, Hoaki T, Watanabe K (2005) Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Environ Microbiol 7: 806-818

28.Kato S, Yanagawa K, Sunamura M, Takano Y, Ishibashi JI, Kakegawa T, Utsumi M, Yamanaka T, Toki T, Noguchi T, Kobayashi K, Moroi A, Kimura H, Kawarabayasi Y, Marumo K, Urabe T, Yamagishi A (2009) Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough. Environ Microbiol

29.Kemnitz D, Chin KJ, Bodelier P, Conrad R (2004) Community analysis of methanogenic archaea within a riparian flooding gradient. Environ Microbiol 6: 449-461

30.Kendall MM, Wardlaw GD, Tang CF, Bonin AS, Liu Y, Valentine DL (2007) Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl Environ Microbiol 73: 407-414

31.Kimura H, Sugihara M, Yamamoto H, Patel BK, Kato K, Hanada S (2005) Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles 9: 407-414

32.Koch M, Rudolph C, Moissl C, Huber R (2006) A cold-loving crenarchaeon is a substantial part of a novel microbial community in cold sulphidic marsh water. FEMS Microbiol Ecol 57: 55-66

33.Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546

34.Kotelnikova S, Macario AJ, Pedersen K (1998) Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48 Pt 2: 357-367

35.Li Y, Li F, Zhang X, Qin S, Zeng Z, Dang H, Qin Y (2008) Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (approximately 13 degrees N). Extremophiles 12: 573-585

36.Lomans BP, Maas R, Luderer R, Op den Camp HJ, Pol A, van der Drift C, Vogels GD (1999) Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65: 3641-3650

37.Lu Y, Lueders T, Friedrich MW, Conrad R (2005) Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol 7: 326-336

38.Lueders T, Friedrich M (2000) Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol 66: 2732-2742

39.MacGregor BJ, Moser DP, Alm EW, Nealson KH, Stahl DA (1997) Crenarchaeota in Lake Michigan sediment. Appl Environ Microbiol 63: 1178-1181

40.Martin-Cuadrado AB, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martinez E, Henn MR, Talla E, Lopez-Garcia P (2008) Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J 2: 865-886

41.Midgley DJ, Saleeba JA, Stewart MI, McGee PA (2007) Novel soil lineages of Archaea are present in semi-arid soils of eastern Australia. Can J Microbiol 53: 129-138

42.Mochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K, Sakata S, Kamagata Y (2009) Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol 59: 714-718

43.Moissl C, Bruckner JC, Venkateswaran K (2008) Archaeal diversity analysis of spacecraft assembly clean rooms. ISME J 2: 115-119

44.Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60: 4559-4566

45.Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ Microbiol 7: 337-347

46.Ohene-Adjei S, Chaves AV, McAllister TA, Benchaar C, Teather RM, Forster RJ (2008) Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microb Ecol 56: 234-242

47.Park SJ, Park BJ, Rhee SK (2008) Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12: 605-615

48.Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. ("Methanothrix concilii") and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40: 79-82

49.Peng J, Lu Z, Rui J, Lu Y (2008) Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl Environ Microbiol 74: 2894-2901

50.Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440: 918-921

51.Rastogi G, Sani RK, Peyton BM, Moberly JG, Ginn TR (2009) Molecular studies on the microbial diversity associated with mining-impacted Coeur d'Alene River sediments. Microb Ecol 58: 129-139

52.Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3: 700-714

53.Robertson CE, Spear JR, Harris JK, Pace NR (2009) Diversity and stratification of archaea in a hypersaline microbial mat. Appl Environ Microbiol 75: 1801-1810

54.Rudolph C, Moissl C, Henneberger R, Huber R (2004) Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol Ecol 50: 1-11

55.Sakai S, Imachi H, Sekiguchi Y, Tseng IC, Ohashi A, Harada H, Kamagata Y (2009) Cultivation of methanogens under low-hydrogen conditions by using the coculture method. Appl Environ Microbiol 75: 4892-4896

56.Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an Acetotrophic Methane-Producing Bacterium Isolated from Marine Sediments. Appl Environ Microbiol 47: 971-978

57.Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10: 1357-1364

58.Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7: 1655-1666

59.Watanabe K, Kodama Y, Kaku N (2002) Diversity and abundance of bacteria in an underground oil-storage cavity. BMC Microbiol 2: 23

60.Wust PK, Horn MA, Drake HL (2009) Trophic links between fermenters and methanogens in a moderately acidic fen soil. Environ Microbiol 11: 1395-1409

1