Chapter 6More about Polynomials 1

Chapter 6More about Polynomials

Warm-up Exercise

1.Let f(x)  2x2x 3, find the values of the following.

(a)f(2)(b)

2.Let g(x)  4x2 5x 6, find the values of the following.

(a)g(3)(b)

3.Let h(x)  2x3 6x2 8x 5, find the values of the following.

(a)h(5)(b)

4.Factorize the following expressions.

(a)x2 5x 4(b) 2x2 2x 24

5.Factorize the following expressions.

(a)3x2 7x 6(b)6x2 7x 20

6.(a)If (3x 2)2Ax2BxC, find the values of A, B and C.

(b)If (2x 1)(3x 5)Ax2BxC, find the values of A, B and C.

7.(a)If 2x2x 2 A(x  1)2Bx, find the values of A and B.

(b)If A(2x 1)2B(4x 1)  16x2, find the values of A and B.

8.Solve the following simultaneous equations.

(a)(b)

9.Solve the following simultaneous equations.

(a)(b)

Build-up Exercise

[ This part provides three extra sets of questions for each exercise in the textbook, namely Elementary Set, Intermediate Set and Advanced Set. You may choose to complete any ONE set according to your need. ]

Exercise 6A

Elementary Set

Level 1

Simplify the following. (110)

1.(2x2 6x 5)  (3x2 2x 1)2.(3x2 2x 9)  (10x2 11x 22)

3.(12x2 7x 2)  (9x2 10x 21)4.(x3 4x2 6x 3)  (2x3 5x2 8x 6)

5.(8x3 2x2 14)  (11x3 4x)6.(5x2 7x 10)  (2x2 6x 5)

7.(11x2 24x 5)  (6x2 2x 1)8.(30x2 45x 9)  (40x2 60x 21)

9.(2x3 15x2 12x 19)  (x3 10x2 6x 5)10.(3x3 16x 5)  (8x3 12x2 9)

Expand the following. (1119)

11.x(3 x)12.2x(x 2)

13.(x 1)(x 5)14.(2x 3)(4x 5)

15.x(x2 1)  2(x2 1)16.x(2x2 3)  3(2x2 3)

17.(3x2 1)(2x 3)18.(4x2 2)(x 1)

19.(6x2 3x)(2x 7)

Level 2

Expand the following. (2023)

20.(2x2 3x 1)(2x 1)21.(3x2 6x 2)(3x 4)

22.(3  4x)(2  7x2 4x)23.(6  3x 2x2)(3  5x)

Simplify the following. (2425)

24.(x2 1)(x 3)  (1)25.(9x2 5x 2)(2x 1)  6x 9

Intermediate Set

Level 1

Simplify the following. (2633)

26.(2x2 5x 4)  (9x2 11x 22)27.(8x2 6x 7)  (2x2 9x 5)

28.(x3 4x2 6x 3)  (2x3 6x2 4x 6)29.(5x3 2x2 7x 10)  (6x3 2x 5)

30.(11x2 24x 5)  (6x2 2x 3)31.(9x3 12x2 6x 7)  (5x3 6x2 7x 8)

32.(8x3 2x2 7x)  (4x3 6x 2)33.(7x3 8x2 6x 2)  (5x3 12x2 9x 11)

Expand the following. (3439)

34.(4x2 1)(x 2)35. (2x2x)(3x 4)

36.(2x 9)(2x2 3)37.(5x2 6)(2x 3)

38.(x2 2x)(x 1)39.(3x2 2)(3x 4)

Level 2

Expand the following. (4042)

40.(5x2 7x 10)(5  2x)41.(6x2 7x 4)(3  5x)

42.(3x2 5  6x)(5  4x)

Simplify the following. (4350)

43.(3x2 2x 4)(x 3)  644.(2x2 3  5x)(2 x)  2x

45.(8x2 5x 2)(2x 1)  5x 946.(5x2 3x 1)(3x 2)  3(x2 6)

47.(3  4x)(3  6x2 3x)  2(9  5xx2)

48.(7x2 6x 1)(3x 5)  (x 6)(2x 3)

49.(8x2 2x 9)(6x 7)  (2x2 5x)(2x 6)

50.(5x2 30x 11)(7x 5)  (5x2 2x 5)(x 4)

Advanced Set 

Level 1

Simplify the following. (5156)

51.(8x2 6x 7)  (2x2 9x 5)

52.(5x3 2x2 8x 11)  (6x3 2x 5)

53.(3x3 2x2 6x 1)  (7x3 8x2 11x 9)

54.(21x2 30x 4)  (8x2 6x 11)

55.(9x3 12x2 6x 9)  (5x3 6x2 8x 8)

56.(7x3 8x2 6x 2)  (5x3 12x2 9x 11)

Expand the following. (5760)

57.(3x2x)(4x 3)58.(6x2 5)(2x 3)

59.(5x2 10)(2x 5)60.(3x2 6x)(3x 4)

Level 2

Expand the following. (6165)

61.(6 x 2x2)(4  7x)62.(x2 2x 5)(8  3x)

63.(3x2 4x 3)(2  3x)64.(8x2 7x 5)(5  4x)

65.(5x2 7x 6)(4  2x)

Simplify the following. (6675)

66.(3x2 2x 4)(x 3)  767.(2x2 3  6x)(3 x) x

68.(3x 4 x2)(2x 1)  4x69.(8x2 7x 3)(2x 1)  5x 9

70.(5x2 3x 1)(3x 2)  4(x2 2)71.(3  4x)(5  6x2 3x)  2(9  5xx2)

72.(7x2 6x 2)(3x 5)  (x 6)(2x 3)

73.(9x2 2x 8)(6x 7)  (2x2 5x)(2x 6)

74.(x2 2x 3)(2x 9)  (2x 1)3

75.(5x2 30x 11)(7x 5)  (5x2 2x 6)(2x 1)

Exercise 6B

Elementary Set

Level 1

Find the quotient and the remainder of each of the following divisions. (120)

1.(3x 4)  (x 1)2.(5x 4)  (x 1)

3.(4x 5)  (2x 1)4.(4x 1)  (2x 1)

5.(x2x 2)  (x 1)6.(x2 8x 5)  (x 3)

7.(x2 8x 11)  (x 1)8.(x2 16x 21)  (x 5)

9.(x2 8x 12)  (x 8)10.(x2 22x 15)  (x 9)

11.(4x2 20x 5)  (2x 1)12.(6x2 8x 1)  (3x 1)

13.(27x2 12x 10)  (3x 2)14.(27x2 15x 10)  (3x 2)

15.(x3 3x2 8x 6)  (x 1)16.(x3 6x2 5x 11)  (x 4)

17.(x3 2x2 7x 13)  (x 2)18.(x3 9x2 10x 6)  (x 2)

19.(6x3 3x2 5x 1)  (2x 1)20.(8x3 12x2 2x 9)  (2x 1)

21.When x2pxq is divided by x 2, the quotient is x 3 and the remainder is 4. Find the values of p and q.

22.When x2axb is divided by x 1, the quotient is x 2 and the remainder is 3. Find the values of a and b.

23.When x2mx 5 is divided by x 1, the quotient is x 3 and the remainder is n. Find the values of m and n.

Level 2

Find the quotient and the remainder of each of the following divisions. (2427)

24.(x3 6x2 15x 7)  (x2x 2)25.(x3 12x2 8x 9)  (x2x 1)

26.(6x3 11x2 4x 7)  (2x2x 3)27.(6x3 8x2 5)  (2x2 1)

28.Suppose f(x) is a polynomial, the quotient is 2x2 5x1 and the remainder is 4 when f(x) is divided by 3x 2.

(a)Find the polynomial f(x).

(b)If g(x)  2f(x)  (x2 2x), find g(x).

(c)Find the remainder when g(x) is divided by x 3.

Intermediate Set

Level 1

Find the quotient and the remainder of each of the following divisions. (2941)

29.(x2 7x 5)  (x 3)30.(x2 6x 5)  (x 5)

31.(x2 9x 20)  (x 5)32.(2x2 12x 5)  (x 2)

33.(6x2 11x 1)  (3x 1)34.(16x2 24x 5)  (4x 3)

35.(x3 6x2 5x 11)  (x 4)36.(x3 8x2 20x 4)  (x 4)

37.(x3 2x2 8x 12)  (x 2)38.(x3 11x 5x2 9)  (x 3)

39.(6x3 5x2 33x 10)  (2x 3)40.(9x3 12x2 3x 9)  (3x 2)

41.(22x2 8x 9  15x3)  (5x 4)

42.When x2px 7 is divided by x 2, the quotient is x 5 and the remainder is q. Find the values of p and q.

43.When 3x2pxq is divided by x 3, the quotient is rx 5 and the remainder is 6. Find the values of p, q and r.

44.When x3px2qxr is divided by x2 2x 3, the quotient is x 4 and the remainder is 2x 1. Find the values of p, q and r.

Level 2

Find the quotient and the remainder of each of the following divisions. (4554)

45.(x3 6x2 15x 7)  (x2 2x 1)46.(x3 13x2 8x 7)  (x2x 2)

47.(2x3 8x2 9x 12)  (x2 5x 1)48.(6x3 13x2 10x 4)  (x2 3 x)

49.(6x3 8x2 6)  (2x2 1)50.(9x3 4  7x)  (x 3x2)

51.(9  4x3x 6x2)  (2x2 5)52.(x4 5x3 3x2 15x 7)  (x2 2x 3)

53.(x4 7x3 52x2 28x 16)  (x2 5x 4)

54. (2x4 9x2 4)  (x2 4x 2)

55.Suppose f(x) is a polynomial, the quotient is 4x2 3 and the remainder is 2 when f(x) is divided by 2x 3.

(a)Find the polynomial f(x).

(b)If h(x)  4f(x)  9, find h(x).

(c)Find the quotient and the remainder when h(x) is divided by 8x 4.

56.When f(x) px3qx2 8 is divided by 3x 2, the quotient is 9x2 9x 6 and the remainder is 20.

(a)Find the values of p and q.

(b)Hence solve the equation f(x)  8.

Advanced Set 

Level 1

Find the quotient and the remainder of each of the following divisions. (5766)

57.(x2 6x 4)  (x 5)58.(x2 12x 5)  (x 2)

59.(10xx2 39)  (x 3)60.(8x2 26x 7)  (4x 3)

61.(12x2 7x 21)  (4x 5)62.(x3 7x2 10)  (x 1)

63.(x3 6x2 12x 9)  (x 3)64.(6x3 7x2 34x 9)  (3  2x)

65.(22x2 15x3 6  8x)  (5x 4)66.(24x3 18x 7)  (3x 3)

67.When 10x2pxq is divided by x 4, the quotient is rx 2 and the remainder is 7. Find the values of p, q and r.

68.When px3qx2rx 4 is divided by 2x2x 1, the quotient is 3x 2 and the remainder is 4x 6. Find the values of p, q and r.

69.When px3qx2 14xr is divided by 4x2 5, the quotient is 3x 8 and the remainder is x 3. Find the values of p, q and r.

Level 2

Find the quotient and the remainder of each of the following divisions. (7080)

70.(x3 6x2 15x 8)  (x2 2x 1)71.(x3 12x2 8x 7)  (x2x 1)

72.(2x3 8x2 11x 2)  (x2 5  4x)73.(x2 17x  4x3 4)  (x2x 7)

74.(2  6x2 28x 5x3)  (x2 4  2x)75.(2x3 2x2 5x 1)  (2x2 1)

76.(12x3 10x2 3x 1)  (3x2 4x)77.(8  4x3 3x 6x2)  (2x2 5)

78.(x4 5x3 3x2 21x 7)  (2x 3 x2)

79.(7x3 8x2 4x4 – 30x 53)  (4 x2x)

80.(89x 47  3x4 40x2)  (x2 4x 2)

81.Suppose f(x) is a polynomial, the quotient is 2x2 5 and the remainder is 3 when f(x) is divided by 3x 2.

(a)Find the polynomial f(x).

(b)If g(x)  6x2 2x 6f(x), find g(x).

(c)Find the quotient and the remainder when g(x) is divided by 2x 3.

82.When f(x)  4x2 12xp is divided by 2x 1, the quotient is qx 7 and the remainder is 3.

(a)Express f(x) in terms of x and q.

(b)Find the values of p and q.

(c)Hence solve the equation f(x)  6  0.

83.When g(x) px3qxr is divided by x 1, the quotient is 2x2 2x 7 and the remainder is 4.

(a)Find the values of p, q and r.

(b)Hence solve the equation g(x)  4.

84.When a polynomial f(x) is divided by x 1, the quotient is px 31 and the remainder is 33.

(a)Express f(x) in terms of x and p.

(b)When f(x) is divided by 2x 3, the quotient is 3  5x and the remainder is 7. Find the value of p.

(c)Hence solve the equation f(x) x 0, leave your answers in surd form if necessary.

Exercise 6C

Elementary Set

Level 1

In each of the following questions, use the remainder theorem to find the remainder when f(x) is divided by g(x). (18)

1.f(x)  2x2 5x 3

(a)g(x) x 1(b)g(x) x 1(c)g(x) x 2

2.f(x)  3x2 2x 5

(a)g(x) x 1(b)g(x) x 2(c)g(x) x 3

3.f(x)  4x2 6x 1

(a)g(x) x 3(b)g(x) x 4(c)g(x) x 5

4.f(x)  8x2 2x 9

(a)g(x)  2x 1(b)g(x)  2x 1(c)g(x)  2x 3

5.f(x)  18x2 6x 4

(a)g(x)  2x 1(b)g(x)  3x 1(c)g(x)  3x 2

6.f(x)  8x3 6x2 5x 1

(a)g(x) x 2(b)g(x) x 5(c)g(x)  2x 3

7.f(x) x3 6x2 9x 2

(a)g(x)  2x 1(b)g(x)  2x 3(c)g(x)  2x 5

8.f(x)  14x3 7x2 5x 3

(a)g(x)  2x 1(b)g(x)  2x 3(c)g(x)  2x 5

9.When f(x) x3 2x2k 7 is divided by x 1, the remainder is 4. Find the value of k.

10.When f(x)  27x3kx2 3x 2 is divided by 3x 1, the remainder is 1. Find the value of k.

11.When f(x) x2 (k 1)x 2 is divided by xk, the remainder is 3. Find the value of k.

12.When f(x) x2ax 4 is divided by xa, the remainder is 4a 2. Find the values of a.

In each of the following questions, determine whether f(x) is divisible by g(x). (1316)

13.f(x) x3 5x 4

(a)g(x) x 1(b)g(x) x 1(c)g(x) x 3

14.f(x) x3 2x2x 3

(a)g(x) x 2(b)g(x)  2x 1(c)g(x)  2x 1

15.f(x)  2x3x2 9

(a)g(x) x 3(b)g(x)  2x 3(c)g(x)  2x 5

16.f(x)  40  82x 9x3 27x2

(a)g(x) x 5(b)g(x)  3x 2(c)g(x)  3x 4

17.If f(x)  2x3kx2 3x 2 is divisible by x 2, find the value of k.

18.If 2x 3 is a factor of f(x)  6x3 5x2kx 18, find the value of k.

Level 2

19.Let f(x) x2axb. When f(x) is divided by x 1 and x 2, the remainders are 0 and 1 respectively. Find the values of a and b.

20.Let f(x) x3ax2bx 2. When f(x) is divided by x 1 and x 2, the remainders are 4 and 32 respectively.

(a)Find the values of a and b.

(b)Find the remainder when f(x) is divided by x2x 2.

21.It is given that x 3 is factor of f(x) x3kx2 5x 12.

(a)Find the value of k.

(b)Hence factorize f(x).

22.It is given that 2x 1 and x 2 are factors of f(x)  2x3px2qx 6.

(a)Find the values of p and q.

(b)Hence factorize f(x).

23.Let f(x)  2x3 3x2 2x 3.

(a)Prove that x 1 is a factor of f(x).

(b)Factorize f(x).

(c)Solve the equation f(x)  0.

24.It is given that f(x) ax3 2bx2x 6 and g(x) bx3 (8 a)x2 13x 6 are both divisible by x 2.

(a)Find the values of a and b.

(b)Solve the equation 2f(x) g(x).

25.It is given that x2x 6 is a factor of f(x) ax3ax2bx 12.

(a)Find the values of a and b.

(b)Solve the equation f(x)  0.

Intermediate Set

Level 1

In each of the following questions, use the remainder theorem to find the remainder when f(x) is divided by g(x). (2629)

26.f(x)  2x2 5x 4

(a)g(x) x 1(b)g(x) x 1(c)g(x) x 2

27.f(x)  8x2 4x 7

(a)g(x)  2x 1(b)g(x)  2x 1(c)g(x)  2x 3

28.f(x)  2x3 6x2 5x 1

(a)g(x) x 1(b)g(x) x 3(c)g(x)  2x 3

29.f(x)  14x3 7x2 5x 3

(a)g(x) x 1(b)g(x)  2x 1(c)g(x)  2x 3

30.When f(x) x3 3x2k 7 is divided by x 1, the remainder is 3. Find the value of k.

31.When f(x)  6x3kx2 3x 2 is divided by 3x 1, the remainder is 2. Find the value of k.

32.When f(x) x3 (k2 1)x 2 is divided by xk, the remainder is 1. Find the value of k.

33.When f(x) x3 (k  2)x2 3x 2 is divided by xk, the remainder is k2. Find the values of k.

In each of the following questions, determine whether f(x) is divisible by g(x). (3435)

34.f(x)  2x3 3x2 4x 1

(a)g(x) x 1(b)g(x) x 2(c)g(x) x 3

35.f(x)  6x3 4x2 12x 3

(a)g(x)  2x 1(b)g(x)  2x 3(c)g(x)  3x 1

36.If f(x)  2x3 3x2kx 2 is divisible by x 2, find the value of k.

37.If f(x) 3x3kx2 4x 3k is divisible by x 1, find the value of k.

38.If 1  2x is a factor of f(x)  4x3 (k 1)x2 3x 4, find the value of k.

Level 2

39.Let f(x)  2x2pxq. When f(x) is divided by x 2 and x 3, the remainders are 5 and 30 respectively. Find the values of p and q.

40.When f(x) x3px2qx 24 is divided by x 2 and x 3, the remainders are 4 and 42 respectively. Find the values of p and q.

41.When f(x) x3 4x2pxq is divided by x 1 and x 3, the remainders are 4 and 76 respectively.

(a)Find the values of p and q.

(b)Find the remainder when f(x) is divided by x2 2x 3.

42.It is given that x 2 is a factor of f(x) px3 3x2 3x 2.

(a)Find the value of p.

(b)Hence factorize f(x).

43.It is given that x 1 and 2x 3 are factors of f(x) ax3 5x2bx 9.

(a)Find the values of a and b.

(b)Hence factorize f(x).

44.Let f(x)  2x3px2 25xq. It is known that 2x 1 and x 3 are factors of f(x).

(a)Find the values of p and q.

(b)Hence factorize f(x).

45.Let f(x)  6x3 5x2 3x 2.

(a)Prove that 3x 2 is a factor of f(x).

(b)Solve the equation f(x)  0.

46.Let f(x) 2x3 5x2x 6.

(a)Prove that 3  2x is a factor of f(x).

(b)Solve the equation f(x)  2x 3, leave your answers in surd form if necessary.

47.It is given that f(x)  6x3x2axb and g(x) 2bx3 8x2 15x (a 2b) are both divisible by 2x 1.

(a)Find the values of a and b.

(b)Solve the equation f(x) g(x)  0, leave your answers in surd form if necessary.

48.It is given that (x 3)(2x 1) is a factor of f(x) 2x3 3ax2 (a 2b)x 6.

(a)Find the values of a and b.

(b)Solve the equation f(x)  2(x 3).

49.Without doing an actual division, find the remainder when x3 3x2 4x 5 is divided by x(x  1).

50.What number should be added to the polynomial 2x3 3x2 5x 2 so that the resulting polynomial is divisible by x  1?

Advanced Set 

Level 1

In each of the following questions, use the remainder theorem to find the remainder when f(x) is divided by g(x). (5153)

51.f(x)  3x3 4x 5

(a)g(x) x 1(b)g(x) x 1(c)g(x) x 2

52.f(x)  8x3 7x2x 4

(a)g(x)  2x 1(b)g(x)  2x 1(c)g(x)  2x 3

53.f(x)  8x2 15x3 3x 2

(a)g(x) x 2(b)g(x)  3x 1(c)g(x)  5x 1

In each of the following questions, determine whether f(x) is divisible by g(x). (5456)

54.f(x)  2x3x2 11x 10

(a)g(x) x 1(b)g(x) x 2(c)g(x)  2x 3

55.f(x)  6x3 3x2x 12

(a)g(x)  2x 1(b)g(x)  2x 1(c)g(x)  2x 3

56.f(x)  15x3 49x2 4x 3

(a)g(x)  2x 1(b)g(x)  3x 1(c)g(x)  5x 2

57.When f(x) x3kx2 2kx 8 is divided by xk, the remainder is 16. Find the values of k.

58.It is given that f(x)  2x3 (2k 1)x2 4x 3 is divisible by xk. Find the values of k.

Level 2

59.It is given that x 3 is a common factor of

f(x)  4bx2ax 45 and g(x) x3ax2bx  3.

Find the values of a and b.

60.When f(x) ax3bx2 7x 15 is divided by x 2 and x 3, the remainders are 5 and 90 respectively. Find the values of a and b.

61.When f(x) ax3 8x2bx 5 is divided by x 3 and x 4, the remainders are 5 and 29 respectively.

(a)Find the values of a and b.

(b)Find the remainder when f(x) is divided by x2x 6.

62.When f(x)  2ax3x2bxb is divided by 2x 1 and 2x 3, the remainders are 5 and 50 respectively.

(a)Find the values of a and b.

(b)Find the remainder when f(x) is divided by 2x2x 3.

63.It is given that x 2 and 2x 3 are factors of f(x)  2x3px2qx 6.

(a)Find the values of p and q.

(b)Hence factorize f(x).

64.It is given that f(x)  6x3px2 26xq is divisible by 3x 2 and x 3.

(a)Find the values of p and q.

(b)Hence factorize f(x).

65.It is given that f(x)  2px3 (q 1)x2 17xp is divisible by 2x 3 and 2x 1.

(a)Find the values of p and q.

(b)Hence factorize f(x).

66.It is known that x 2 is a factor of f(x) x3kx2x 2.

(a)Find the value of k.

(b)Solve the equation f(x)  0.

67.Let f(x)  6x3 7x2 6x 1.

(a)Prove that 3x 1 is a factor of f(x).

(b)Solve the equation f(x)  3x 1.

68.When f(x)  2x3px2 7xq is divided by x and x 1, the remainders are both 6.

(a)Find the values of p and q.

(b) Solve the equation f(x)  6.

69.It is known that f(x) ax3 10x2bx (3b 2a) and g(x)  9x3 (4b 1)x2 (2ab)x  3 are both divisible by 3x 1.

(a)Find the values of a and b.

(b)Solve the equation f(x)  2g(x) 0, leave your answers in surd form if necessary.

70.It is given that 3x2 11x 4 is a factor of f(x) ax3 (b 2)x2 2bx  24.

(a)Find the values of a and b.

(b)Solve the equation f(x) 3(3x 1).

71.Without doing an actual division, find the remainder when 2x3x2 9is divided by (x 1)(x 2).

72.Without doing an actual division, find the remainder when 6x3 13x2 36x 57is divided by 2x2 9x 9.

73.(a)Find the remainder when x2 004 is divided by x 1.

(b)Express x2 004 in terms of x 1 and Q(x), where Q(x) is the quotient of x2 004 (x 1).

(c)Hence find the remainder when 42 004 3 is divided by 5.

74.What number should be added to the polynomial 10x3 14x2 57x 37so that the resulting polynomial is divisible by 5x 3?

75.Find a linear polynomial such that when it is added to the polynomial 6x3 5x2 23x 1,the resulting polynomial is divisible by 2x2 5x 2.

Exercise 6D

Elementary Set

Level 1

Factorize the following polynomials. (18)

1.x3 2x 12.x3 3x 2

3.x3 10x 114.x3x2x 1

5.x3 8x2 17x 106.x3 6x2x 6

7.x3 3x2 2x 88. x3 8x2 16x 8

Determine whether each of the following polynomials has a linear factor with integral coefficient and constant term. (914)

9.x3 3x2 3x 110.x3x2 2

11.2x3x2 3x 112.4x3 8x2 5x 1

13.17x 6 x3 5x214.3x2 6x 8 x3

Level 2

Factorize the following polynomials. (1518)

15.3x3 17x2 9x 516.4x3 8x2x 3

17.2x3 7x2 27x 1818.6x3 19x2 11x 6

19.Let f(x)  3x3 5x2 26x 8.

(a)Factorize f(x).

(b)Solve the equation f(x)  0.

20.Let g(x)  6x3 11x2 13x 15.

(a)Factorize g(x).

(b)Solve the equation g(x)  0.

Intermediate Set

Level 1

Factorize the following polynomials. (2126)

21.x3 11x 1222.x3 10x2 11

23.x3 2x2 19x 2024.x3x2 10x 8

25.3x3 7x2 5x 126.24x 9x2 20 x3

Determine whether each of the following polynomials has a linear factor with integral coefficient and constant term. (2730)

27.x3 12x2 48x 6428.4x3 3x 1

29.6x3 4x2 7x 130.14x2 24x3x 1

Level 2

Factorize the following polynomials. (3137)

31.3x3 19x2 21x 532.5x3 17x2 11x 6

33.2x3 5x2 11x 434.6x3 5x2 3x 2

35.24x3 22x2x 236.3x3 12x 32  8x2

37.8x 12  10x3 15x2

38.Let f(x)  3x3 20x2 39x 18.

(a)Factorize f(x).

(b)Solve the equation f(x)  0.

39.Let f(x)  6x3 7x2 14x 8.

(a)Factorize f(x).

(b)Solve the equation f(x)  0.

40.Solve the equation 4x3 8x2 9x 18  0.

Advanced Set 

Level 1

Factorize the following polynomials. (4144)

41.x3 5x2 2x 842.2x3 7x2 5x 1

43.6x3 6x 1  11x244.19x2 30x3 1

Determine whether each of the following polynomials has a linear factor with integral coefficient and constant term. (4546)

45.8x3 4x 146.5x2 12x3 1

Level 2

Factorize the following polynomials. (4756)

47.2x3 5x2 11x 548.3x3 10x2 9x 4

49.6x3 7x2x 250.5x3 12x2 9x 2

51.2x3 11x2 18x 952.3x3 8x2 12x 32

53.4x3 4x2 19x 1054.10x3 12  41x 29x2

55.12x2 8x3 26x 1556.18x 13x2 8x3 9

57. Let f(x)  8x3 20x2 6x 9.

(a)Factorize f(x).

(b)Solve the equation f(x)  0.

58.Let g(x)  8x3 22x2 27x 15.

(a)Factorize g(x).

(b)Solve the equation g(x)  0.

59.Solve the equation 6x3x2 14x 8  0, leave your answers in surd form if necessary.

60.The figure shows the graph of yx3 6x2axb.

(a)Find the values of a and b.

(b)Factorize x3 6x2axb.

(c)Factorize f(x 1) where f(x) x3 6x2axb.

(d)Solve the equation f(x 2) x.

Chapter Test / (Time allowed: 1 hour)

Section A

1.Find the remainder when 2x3 3x2 7 is divided by 2x 1.(2 marks)

2.Find the value of k if x3kx2 11x 10 is divisible by x 2. (3 marks)

3.When x3kx2x 8 is divided by x 2, the remainder is 6, find the value of k. (3 marks)

4.Let f(x)  (x 2)(x 3)  3. When f(x) is divided by xk, the remainder is k. Find the values of k. (5 marks)

5.Let f(x)  2x3x2 13x 6.

(a)Find the value of f(2). (1 mark)

(b)Hence factorize f(x).(4 marks)

6.Let h(x)  2x3 15x2 34xk.

(a)If h(x) is divisible by x 2, find the value of k.(3 marks)

(b)(i)Find the value of h(4).

(ii)Hence factorize h(x). (4 marks)

Section B

7.Let g(x) px3x2qx 6. It is divisible by x 2 and has a remainder of 30 when divided by x 3.

(a)Find the values of p and q. (6 marks)

(b)Solve the equationg(x) 0. (4 marks)

8.Let f(x)  4x3px2 7x 2 and g(x)  2x3 5x2qx 8. When f(x) and g(x) are divided by x 3, the remainders are 19 and 19 respectively.

(a)Find the values of p and q. (4 marks)

(b)Solve the equation f(x) g(x)  0. (6 marks)

Multiple Choice Questions (3 marks each)

Chapter 6More about Polynomials 1

9.If A(x2Bx)  4x2 8x, then

A.A 2 and B 4.

B.A 4 and B 2.

C.A 4 and B 4.

D.A 4 and B 8.

10.When a polynomial f(x) is divided by 3x 2, the remainder is

A..

B..

C..

D..

11.Which of the following is a factor of 8x3 12x 9?

A.2x 1

B.2x 1

C.2x 3

D.2x 3

12.If ax3bxc is divisible by x 1, then

A.abc 0.

B.abc 0.

C.abc 0.

D.abc 0.

13.If x 1 and 2x 3 are factors of f(x)6x3px2qx 15, which of the following is also a factor of f(x)?

A.3x 5

B.3x 5

C.6x 5

D.6x 5

14.Let f(x) be a polynomial. If

f(0) f(2) 0,

which of the following must not be a factor of f(x)?

I.x

II.x – 2

III.x + 2

A.I only

B.II only

C.III only

D.None of the above

15.If f(x) is divisible by x 1, which of the following must be a factor of f(x 1)?

A.x

B.x 1

C.x 2

D.x 2

16.When a polynomial f(xk) is divided by xk, the remainder is

A.f(0).

B.f(k).

C.f(2k).

D.f(2k).

17.If xa is a factor of f(x), which of the following must be a factor of f(x)?

A.xa

B.xa

C.x 2a

D.x 2a

18.When polynomials f(x) and g(x) are divided by xa, the remainders are both R. Which of the following expressions must have a factor xa?

A.f(x) g(x)

B.f(x) g(x)

C.f(x) g(x)

D.f(x) g(x)

Chapter 6More about Polynomials 1

Hints / (for questions with in the textbook)

Exercise 6C

27.(c)Key information

Result obtained in (b), i.e. x2 000x = (x – 1)Q(x)  2

Analysis

82 000 does not appear in any given information of the question.

We try to see if the result obtained in (b) can be used to handle the term 82 000.

Method

As the term x2 000 in the result obtained in (b) has the same structure as 82 000, we substitute x 8 into the identity and obtain 82 000 8  7Q(8)  2. To ensure a correct answer, Q(8) must be an integer.

Revision Exercise 6

33.(b)Key information

f(x) = (x – 2)Q1(x)  7, where Q1(x) is the quotient of f(x)  (x 2).

f(x) = (x 1)Q2(x) – 2, where Q2(x) is the quotient of f(x)  (x 1).

From (a), we obtain f(x) = (x – 2)(x 1)Q3(x)  3x 1,

where Q3(x) is the quotient of f(x)  [(x 2)(x 1)].

Analysis

The required division is f(x 3)  [(x 1)(x 4)] and the divisor is of degree two.

We try to see if the information f(x) = (x – 2)(x 1)Q3(x)  3x 1, which also represents a division with a divisor of degree two, can be used.

Method

As f(x) = (x – 2)(x 1)Q3(x)  3x 1 represents a division similar to the required division, it is useful to replace x with x 3 and check if this replacement gives us an identity representing the required division.