ConceptsandConnections6e ExtraPhotoCaptionsCredits 3-14-081
Instructor Resources for ESSENTIAL Biology 4TH EDITIONAND ESSENTIAL BIOLOGY WITH PHYSIOLOGY 3RD EDITION
Captions and Credits for Extra Photos
Note: x = extra photo not in book
CHAPTER 1: INTRODUCTION: BIOLOGY TODAY
File Name / Description / Credit01_01ax1OrderButterfly.jpg / Order: butterfly (symmetry) / Photodisc
01_01ax2OrderNautilus.jpg / Order: nautilus (Fibonacci) / CORBIS
01_01ax3OrderGaillardia.jpg / Order: Gaillardia / John Heywood, Southwest Missouri State University
01_01ax4OrderRootTissue.jpg / Order: cross section of vascular tissue of a root (micrograph) / Brian Capon
01_01ax5OrderCollage.jpg / Order: Butterfly, nautilus, Gaillardia, cross section of vascular tissue of a root (photo collage) / top left: Photodisc; top right: CORBIS; bottom left: John Heywood, Southwest Missouri State University; bottom right: Brian Capon
01_01cx1DevelopSnake.jpg / Growth and development: snake hatching / Dorling Kindersley
01_01cx2DevelopFrogEgg.jpg / Growth and development: frog eggs / ArsNatura
01_01cx3DevelopSeedling.jpg / Growth and development: radish seedling / Brian Capon
01_01cx4DevelopDeer.jpg / Growth and development: deer / CORBIS
01_01cx5DevelopCollage.jpg / Growth and development: snake hatching, frog eggs, radish seedling, doe and fawn (photo collage) / upper left: Dorling Kindersley: upper right: ArsNatura; lower left: Brian Capon; lower right: CORBIS
01_01dx1EnergySunlight.jpg / Energy utilization: sunlight / Photodisc
01_01dx2EnergyMosquito.jpg / Energy utilization: mosquito / Digital Vision
01_01dx3EnergyLeopard.jpg / Energy utilization: leopard and kill / Photodisc
01_01dx4EnergyKoala.jpg / Energy utilization: koala / Eyewire
01_01dx5EnergyCollage.jpg / Energy: sunlight, mosquito feeding, leopard and kill, koala eating (photo collage) / upper left: Photodisc; upper right: Digital Vision; lower left: Photodisc; lower right: Eyewire
01_01exSundewPlant.jpg / Sun dew with fruit fly / Thomas Eisner
01_01fx1ReproBeetles.jpg / Reproduction: beetles mating / CORBIS
01_01fx2ReproHuman.jpg / Reproduction: father and child / Photodisc
01_01fx3ReproBacteria.jpg / Reproduction: bacteria conjugating (micrograph) / R.G.E. Murray, University of Western Ontario
01_01fx4ReproLily.jpg / Reproduction: lily reproductive structures / Brian Capon
01_01fx5ReproCollage.jpg / Reproduction: beetles mating, father and child, bacteria conjugating, lily reproductive structures (photo collage) / top left: CORBIS: top right: Photodisc; bottom left: R.G.E. Murray; bottom right: University of Western Ontario, Brian Capon
01_01gx1Poorwill.jpg / Evolutionary adaptation (camouflage): poor will / Mark Chappell, University of California, Riverside
01_01gx2AdaptationCollage.jpg / Evolutionary adaptation (camouflage): sea horse and poor will (photo collage) / Mark Chappell, University of California, Riverside
01_02xEarthFromMoon.jpg / Earth from moon / NASA
01_05xDNAModel.jpg / DNA (molecular model) / ArsNatura
CHAPTER 2: ESSENTIAL CHEMISTRY FOR BIOLOGY
File Name / Description / Credit02_07xMethane.jpg / Methane (molecular model) / Benjamin Cummings
02_13x1IceWaterStream.jpg / Ice, liquid water, and steam (collage of molecular models) / ArsNatura
02_13x2Ice.jpg / Ice (molecular model) / ArsNatura
02_13x3Water.jpg / Liquid water (molecular model) / ArsNatura
02_13x4Steam.jpg / Steam (molecular model) / ArsNatura
CHAPTER 3: THE MOLECULES OF LIFE
File Name / Description / Credit03_01x1Ethane.jpg / Ethane (molecular model) / Benjamin Cummings
03_01x2Ethene.jpg / Ethene (molecular model) / Benjamin Cummings
03_01x3Butane.jpg / Butane (molecular model) / Benjamin Cummings
03_01x4Isobutane.jpg / Isobutane (molecular model) / Benjamin Cummings
03_01x5Hexane.jpg / Hexane (molecular model) / Benjamin Cummings
03_01x6Cyclohexane.jpg / Cyclohexane (molecular model) / Benjamin Cummings
03_01x7Hydrocarbons.jpg / Hydrocarbons: butane (left), isobutane (right), cyclohexane (bottom) (collage of molecular models) / Benjamin Cummings
03_01x8StructuralIsomer.jpg / Structural isomers: butane (left) and isobutane (right) (collage of molecular models) / Benjamin Cummings
03_02xMethane.jpg / Methane (molecular model) / Benjamin Cummings
03_05x1Glucose.jpg / Glucose (molecular model) / Benjamin Cummings
03_05x2Galactose.jpg / Galactose (molecular model) / Benjamin Cummings
03_05x3HexoseSugars.jpg / Hexose sugars: Glucose (left) and galactose (right) (molecular models) / Benjamin Cummings
03_07x1GlucoseMonomer.jpg / Glucose monomer (molecular model) / Benjamin Cummings
03_07x2Maltose.jpg / Maltose (molecular model) / Benjamin Cummings
03_07x3Disaccharides.jpg / Disaccharides: Glucose monomer (left), maltose (bottom), and sucrose (right) (molecular models) / Benjamin Cummings
03_09x1Starch.jpg / Starch (molecular model) / Benjamin Cummings
03_09x2Cellulose.jpg / Cellulose (molecular model) / Benjamin Cummings
03_09x3StarchCellulose.jpg / Starch (left) and cellulose (right) (molecular models). Both are polymers of glucose, synthesized by plants. Both have the number 1 carbon of one glucose subunit linked to the number 4 carbon of the next glucose molecule in the chain. However, the 1-carbon hydroxyl group of the glucose lies in a different position for starch than for cellulose. In starch, each glucose monomer is in the alpha configuration, so the hydroxyl is below the ring, whereas in cellulose the subunits are in the beta configuration, with the hydroxyl above the ring. Most organisms, including humans, possess enzymes that can hydrolyze the alpha linkage in starch, but not the beta linkage in cellulose. In this figure, 3 subunits of each have been shown in a computer-generated model to demonstrate the difference in shape that can result from this subtle difference in linkage. Starch exists in nature as a long polymer possessing a helical shape, whereas a naturally-synthesized long polymer of cellulose would be straight. / Benjamin Cummings
03_09x4TermiteTrichonympha.jpg / Cellulose digestion: termite (left) and Trichonympha in termite gut (right) (micrograph) / left: Dorling Kindersly; right: Fred Spiegel, University of Arkansas
03_12xButterOil.jpg / Butter and canola oil / Benjamin Cummings
03_13x1Estradiol.jpg / Estradiol (molecular model) / Benjamin Cummings
03_13x2Testosterone.jpg / Testosterone (molecular model) / Benjamin Cummings
03_13x3Cholesterol.jpg / Cholesterol (computer model) / Benjamin Cummings
03_13x4Mallards.jpg / Male and female mallards / John Foxx Images
03_13x5Peacocks.jpg / Male and female peacocks / Photodisc
03_13x6SageGrouse.jpg / Male and female sage grouse / Mark Chappell, University of California, Riverside
03_15xExtrudingSilk.jpg / Silk drawn from the spinnerets at the rear of a spider / Thomas Eisner
03_19xSickleCellsLM.jpg / Sickled cells (light micrograph) / ArsNatura
03_25xWatsonCrick.jpg / James Watson and Francis Crick / National Cancer Institute
CHAPTER 4: A TOUR OF THE CELL
File Name / Description / Credit04_01x1Paramecium.jpg / Paramecium / Dorling Kindersley
04_01x2BacillusPolmyx.jpg / Bacillus polymyxa (micrograph) / R.G.E. Murray, University of Western Ontario
04_01x3Ecoli.jpg / E. coli (micrograph) / R.G.E. Murray, University of Western Ontario
04_08xNuclei.jpg / Nuclei and F-actin in bovine pulmonary artery endothelial cells (micrograph) / Molecular Probes
04_21x1Actin.jpg / Actin (micrograph) / Nancy Kedersda
04_21x2Actin.jpg / Actin (micrograph) / Nancy Kedersda
04_22xSperm.jpg / Sperm, sea urchin (micrograph) / William J. Lennarz, University of Illinois
CHAPTER 5: THE WORKING CELL
File Name / Description / Credit05_1x1KEandPEdam.jpg / Kinetic and potential energy: dam / Photodisc
05_1x2KEandPEcheetah.jpg / Kinetic and potential energy: cheetah
05_4xATP.jpg / ATP (molecular model) / Benjamin Cummings
CHAPTER 6: CELLULAR RESPIRATION: OBTAINING ENERGY FROM FOOD
File Name / Description / Credit06_16xFermentationWine.jpg / Fermentation in a winery / Domaine Chandon
CHAPTER 7: PHOTOSYNTHESIS: USING LIGHT TO MAKE FOOD
File Name / Description / Credit07_02xChlorophyllModel.jpg / Chlorophyll (molecular model) / Benjamin Cummings
07_13xMelvinCalvin.jpg / Melvin Calvin / National Institutes of Health
CHAPTER 8 CELLULAR REPRODUCTION: CELLS FROM CELLS
File Name / Description / Credit08_04x1Chromatin.jpg / Chromatin (TEM) / Ulrich Laemmli, Dept. of Molecular Biology, U. of Geneva
08_04x2ChromatinDetail.jpg / Chromatin: detail (TEM) / Ulrich Laemmli, Dept. of Molecular Biology, U. of Geneva
08_04x3Chromosomes.jpg / Chromosomes (micrograph) / Ulli Wier
08_07x1MitosisLMCollage.jpg / Mitosis LM collage / Benjamin Cummings
08_07x2EarlyProphaseLM.jpg / Early prophase LM (micrograph) / Benjamin Cummings
08_07x3LateProphaseLM.jpg / Late prophase LM (micrograph) / Benjamin Cummings
08_07x4MetaphaseLM.jpg / Metaphase LM (micrograph) / Benjamin Cummings
08_07x5AnaphaseLM.jpg / Anaphase LM (micrograph) / Benjamin Cummings
08_07x6EarlyTelophaseLM.jpg / Early telophase LM (micrograph) / Benjamin Cummings
08_07x7LateTelophaseLM.jpg / Late telophase LM (micrograph) / Benjamin Cummings
08_9x1BreastCancerCell.jpg / Breast cancer cell (micrograph) / National Institute of Cancer
08_9x2MammogramNormal.jpg / Normal mammogram / National Institute of Cancer
08_9x3MammogramCancer.jpg / Mammogram showing cancer / National Institute of Cancer
08_9x4Mammograms.jpg / Normal mammogram and mammogram showing cancer / National Institute of Cancer
08_11x1HumanFemaleBands.jpg / Human female chromosomes shown by bright field G-banding (micrograph) / University of Washington Department of Pathology
08_11x2HumanFemaleKaryotype.jpg / Human female karyotype shown by bright field G-banding of chromosomes (micrograph) / University of Washington Department of Pathology
08_11x3HumanMaleBands.jpg / Human male chromosomes shown by bright field G-banding (micrograph) / University of Washington Department of Pathology
08_11x4HumanMaleKaryotype.jpg / Human male karyotype shown by bright field G-banding of chromosomes (micrograph) / University of Washington Department of Pathology
08_T01x1XYYKaryotype.jpg / XYY karyotype (micrograph) / University of Washington Department of Pathology
08_T01x2KlinefelterKaryotype.jpg / Klinefelter syndrome—XXXXY karyotype. This karyotype shows a variant of Klinefelter syndrome. Individuals with this syndrome are male, typically with the karyotype XXY. They exhibit a characteristic phenotype including tall stature, infertility, gynecomastia, and hypogonadism. Aneuploidy above one extra chromosome is usually fatal but because of X-inactivation, which “turns off” all but one X chromosome per cell, the effects of 3 extra chromosomes are reduced. (micrograph) / University of Washington Department of Pathology
CHAPTER 9 PATTERNS OF INHERITANCE
File Name / Description / Credit09_01xMendel.jpg / Gregor Mendel (photo) / ArsNatura
09_02xSweatpeas.jpg / Sweet pea flowers / Travis Amos/ArsNatura
09_04xRoundWrinkledPea.jpg / Round and wrinkled peas / Madan K. Bhattacharyya, Iowa State University
09_18x1CarnationRed.jpg, 09_18x2CarnationPink.jpg, 09_18x3CarnationWhite.jpg / Incomplete dominance in carnation flower color: RR (red), Rr (pink), and rr (white) / ArsNatura
09_20xABObloodTypes.jpg / ABO blood types / Benjamin Cummings
09_21xNormalAndSickled.jpg / Normal and sickled cells
CHAPTER 10: THE STRUCTURE AND FUNCTION OF DNA
File Name / Description / Credit10_03xJamesWatson.jpg / James Watson / Benjamin Cummings
10_19xTranslocation.jpg / Translocation (micrograph) / Lawrence Berkeley National Laboratory
10_25x1Phages.jpg / Phages on bacteria / Mandayam V. Parthasarathy, Cornell Integrated Microscopy Center
10_25x2Phages.jpg / Phages (TEM) / ArsNatura
10_27xTobaccoMosaicVirus.jpg / Tobacco mosaic virus
10_29x1HerpesCollage.jpg / Herpes simplex virus (TEM) and lesion on lower lip, second day after onset (photo collage) / CDC, R. G. E. Murray, University of Western Ontario, R. G. E. Murray, University of Western Ontario, Huntington Potter, University of South Florida and David Dressler, Oxford University, ArsNatura
10_29x2ChildWithSmallpox.jpg / Child with smallpox / United Nations
10_29x3HepatitisVirus.jpg / Hepatitis virus (micrograph) / ArsNatura
10_29x4ChildWithMeasles.jpg / Measles on boy / CDC
10_29x5MeaslesCollage.jpg / Measles virus (TEM) and infected child (photo collage) / CDC
10_29x6MeaslesVirus.jpg / Measles virus (TEM) / CDC
10_29x7Polio.jpg / Polio / United Nations
10_31x1HIVinfection.jpg / HIV infection (TEM) / CDC
10_31x2AIDSQuilt.jpg / AIDS quilt / CDC
10_35xFluEpidemic.jpg / Influenza epidemic / National Archive
CHAPTER 11: HOW GENES ARE CONTROLLED
File Name / Description / Credit11_04xCalicoCat.jpg / Calico cat / Photodisc
11_09x1DrosophilaNormal.jpg / Normal winged Drosophila / E. Lewis
11_09x2DrosophilaDouble.jpg / Double-winged Drosophila / E. Lewis
11_09x3DrosoNormalDouble.jpg / Normal and double-winged Drosophila (photo collage) / E. Lewis
11_09x4DrosophilaEyeLM.jpg / Mutant Drosophila eyes on leg (LM) / Walter Gehring
11_09x5DrosophilaEyes.jpg / Drosophila eyes. Normal (top left), Bar (bottom left), Enhancer trap (bottom right), and Eyes absent (top right) (photo collage) / Tanya Wolff, University of Washington, St. Louis, Jackson Laboratory
CHAPTER 12: DNA TECHNOLOGY
File Name / Description / Credit12_03x1DNATechnologyCollage.jpg / DNA technology collage
12_03x2BiotechnologyLab.jpg / Biotechnology lab
12_03x3DNATechnicians.jpg / DNA technicians
12_03x4DNAAnalysisInCDC.jpg / DNA analysis in CDC laboratory. / Lawrence Berkeley National Laboratory
12_07x1Plasmids.jpg / Plasmids (micrograph) / ArsNatura
12_07x2EColiDNA.jpg / Bacterium releasing DNA with plasmids (micrograph) / Huntington Potter, University of South Florida and David Dressler, Oxford University
12_17xDNABandPattern.jpg / Laboratory worker reviewing DNA band pattern of a gel / Lawrence Berkeley National Laboratory
12_T01xArabidopsis.jpg / Arabidopsis
12_x1MouseEyeAbleb1.jpg / Mutant mouse: Eye bleb / Jackson Laboratory
12_x2MouseEyeAbleb2.jpg / Mutant mouse: Eye bleb / Jackson Laboratory
12_x3MouseHfh11.jpg / Mutant mouse: Hfh11 / Jackson Laboratory
12_x4MouseLama2.jpg / Mutant mouse: Lama2 / Jackson Laboratory
12_x5MouseLepr.jpg / Mutant mouse: Lepr / Jackson Laboratory
12_x6MouseMgf.jpg / Mutant mouse: Mgf, mast cell growth factor / Jackson Laboratory
12_x7MousePax3.jpg / Mutant mouse: Pax3, mast cell growth factor / Jackson Laboratory
12_x8MouseOtc.jpg / Mutant mouse: Otc / Jackson Laboratory
12_x9MousePax6.jpg / Mutant mouse: Pax6 / Jackson Laboratory
12_x10MousePit1.jpg / Mutant mouse: Pit1 / Jackson Laboratory
12_x11MousePudgy.jpg / Mutant mouse: Pudgy / Jackson Laboratory
12_x12MouseRubyEye.jpg / Mutant mouse: Ruby_eye / Jackson Laboratory
12_x13MouseStargazer.jpg / Mutant mouse: Stargazer / Jackson Laboratory
12_x14MouseUlnaless1.jpg / Mutant mouse: Ulnaless 1 / Jackson Laboratory
12_x15MouseUlnaless2.jpg / Mutant mouse: Ulnaless 2 / Jackson Laboratory
12_x16NudeMouse.jpg / Mutant mouse: nude / National Cancer Institute
CHAPTER 13: HOW POPULATIONS EVOLVE
File Name / Description / Credit13_02x1Lamarck.jpg / Jean Baptiste Lamarck / ArsNatura
13_02x2Lyell.jpg / Charles Lyell / ArsNatura
13_02x3AlfredWallace.jpg / Alfred Wallace / ArsNatura
13_02x4DarwinCartoon.jpg / Darwin as an ape (cartoon) / ArsNatura
13_05xSedimentary.jpg / Sedimentary rock with shells and other fossils visible in the face of the cliff / Barbara J. Miller/Biological Photo Service
13_24xCheetahBottleneck.jpg / Cheetah, bottleneck effect / Digital Vision
13_29x1SexualDimorphism.jpg / Sexual selection and the evolution of male appearance / CORBIS
13_29x2MalePeacock.jpg / Male peacock / CORBIS
13_29x3Territoriality.jpg / Territoriality: Mountain goats (left), stallions (right) / CORBIS
CHAPTER 14: HOW BIOLOGICAL DIVERSITY EVOLVES
File Name / Description / Credit14_16xSanAndreasFault.jpg / San Andreas fault / USGS
14_17xPlateBoundaries.jpg / Crustal plate boundaries with earthquake epicenters / USGS
14_18xChicxulubCrater.jpg / Chicxulub crater: computer-generated view of ocean topography / NASA
CHAPTER 15: THE EVOLUTION OF MICROBIAL LIFE
File Name / Description / Credit15_00xStromatolites.jpg / Stromatolites in Northern Canada / Canadian Geological Survey
15_07x1LargeProkaryote.jpg / The largest known prokaryote, Epulopiscium fishelsoni, about a half-millimeter long, dwarfs four eukaryotes (the protist Paramecium). The prokaryotic giant lives as a symbiont in the gut of surgeonfish (micrograph) / Ester Angert, Harvard University
15_07x2BacteriaCheekCell.jpg / Bacteria (stained purple) and a single eukaryotic cheek cell stained pink (micrograph) / Benjamin Cummings
15_07x3Microfossils.jpg / Spheroidal gunflint microfossils. Optical photomicrographs showing fossil unicells in petrographic thin sections of stromatolitic gunflint chert. Middle Precambrian. (micrograph)
15_07x4FossilCyanobacteria.jpg / Filamentous cyanobacteria from the Bitter Springs Chert. Optical photomicrographs showing exceptionally well-preserved Oscillatriacean, Nostocacean and, possibly, Rivulariacean trichomes in the petrographic thin sections of black chert from the Bitter Springs Formation of central Australia; 850 million years old. (micrograph)
15_09x1Myxobacteria.jpg / A type of delta proteobacteria: Myxobacteriales (slime bacteria), Chondromyces crocatus. In response to a chemical signal, possibly induced by starvation conditions, hundreds of thousands (millions?) of bacteria stream together and produce a massive (relatively) fruiting body. The large yellow “spores” that form clusters at the tips of the branches are actually packages of bacteria, each containing many thousands of bacterial rods. The spore packages will be dispersed by wind, water, and/or insects. Eventually, the outer wall will break down and the individual bacterial rods will be released to begin the cycle again. / George Barron, University of Guelph
15_09x2CyanobacteriaBloom.jpg / A bloom of cyanobacteria (photo collage) The larger lake, located in Cape Cod, Massachusetts, is undergoing a population explosion–often called a “bloom”–of cyanobacteria. The lake’s blue-green color results from the presence of trillions of cyanobacterial cells. / Fred Siegel, University of Arkansas
15_09x3Gloeothece.jpg / Gloeothece (micrograph) / Sue Barns, Los Alamos National Laboratory
15_09x4Nostoc.jpg / Nostoc (micrograph) / Fred Siegel, University of Arkansas
15_09x5Fischerella.jpg / Fischerella (micrograph) / Sue Barns, Los Alamos National Laboratory
15_09x6Calothrix.jpg / Calothrix (micrograph) / Sue Barns, Los Alamos National Laboratory
15_09x7Cyanobacteria.jpg / Photo collage of cyanobacteria (clockwise from upper left): Gloeothece, Nostoc, Fischerella, and Calothrix (micrographs) / Sue Barns, Los Alamos National Laboratory
15_10x1FlagellaCollage.jpg / Flagella collage: amphitrichous flagella (flagella located at extremities) of Spirillum volutans and peritrichous flagella (uniformly distributed flagella) of Proteus vulgaris / Benjamin Cummings
15_10x2Flagella.jpg / Amphitrichous flagella (flagella located at extremities) of Spirillum volutans (micrograph)
15_10x3Flagella.jpg / Peritrichous flagella (uniformly distributed flagella) of Proteus vulgaris (micrograph)
15_10x4Flagella.jpg / Flagella, Aquaspirillum serpens (TEM)
15_10x5GramStainBacteria.jpg / A Gram stain of Gram-positive coccus Staphylococcus aureus and the Gram-negative rod Escherichia coli (micrograph) / Benjamin Cummings
15_13x1Thermophiles.jpg / Thermophiles: Yellowstone hot springs / CORBIS
15_13x2Beggiatoa.jpg / Beggiatoa: a sulfur-eating bacteria (micrograph) / Michael Richard
15_21x1CiliatesCollage.jpg / Ciliates (photo collage: Stentor and Paramecium) / left: Fred Spiegel, University of Arkansas; right: Dorling Kindersley
15_21x2Stentor.jpg / Stentor (micrograph) / Fred Spiegel, University of Arkansas
15_21x3Paramecium.jpg / Paramecium (micrograph) / Dorling Kindersley
15_21x4ParameciumConjugation.jpg / Paramecium conjugation (micrograph) / Benjamin Cummings
15_22xEuglenaPhoto.jpg / Euglena (micrograph) / Fred Spiegel, University of Arkansas
CHAPTER 16: PLANTS, FUNGI AND THE MOVE ONTO LAND
File Name / Description / Credit16_07x1Hornwort.jpg / Hornwort, Haeoceros laevis / Fred Spiegel, University of Arkansas
16_07x2ClubMoss.jpg / Club moss / Fred Spiegel, University of Arkansas
16_07x3Quillwort.jpg / Quillwort, Isoetes melanopoda / Carl Taylor, Milwaukee Public Museum
16_07x4Horsetail.jpg / Horsetail / Fred Spiegel, University of Arkansas
16_07x5GinkgoMaleFemale.jpg / Ginkgo biloba male and female plants / Fred Spiegel, University of Arkansas
16_07x6GinkgoFemale.jpg / Ginkgobiloba female / Fred Spiegel, University of Arkansas
16_07x7GinkgoMale.jpg / Ginkgobiloba male / Fred Spiegel, University of Arkansas
16_07x8GinkgoSperm.jpg / Ginkgobiloba sperm (micrograph)
16_07x9FraserFirCones.jpg / Pollen cones of Fraser fir. A cluster of yellow “male” strobili, cones with microsporophylls that produce and release pollen. (The word male is in quotes because strobili and microsporophylls are part of the sporophyte generation and thus do not actually have gender. But botanists often refer to them as male cones because pollen is a microspore with a developing male gametophyte inside.) / Linda Graham, University of Wisconsin, Madison
16_07x10BristleconePine.jpg / Bristlecone pine / Mark Chappell, University of California, Riverside
16_07x11Sequoias.jpg / Sequoias, Sequoia National Park / Eyewire
16_07x12NorwayPeatMoss.jpg / A peat moss bog in Norway / John Shaw, Duke University
16_09x1MossLifeCycleCollage.jpg / Moss life cycle (photo collage) / Fred Spiegel, University of Arkansas
16_09x2MossGametophytes.jpg / Moss gametophytes / Fred Spiegel, University of Arkansas
16_09x3MossArchegonium.jpg / Moss archegonium (micrograph) / Fred Spiegel, University of Arkansas
16_09x4MossSporophytes.jpg / Moss sporophytes / Fred Spiegel, University of Arkansas
16_09x5MossSporongium.jpg / Moss sporangium / Fred Spiegel, University of Arkansas
16_09x6MossSpores.jpg / Moss spores (micrograph) / Fred Spiegel, University of Arkansas
16_09x7MossProtonemata.jpg / Moss protonemata (micrograph) / Fred Spiegel, University of Arkansas
16_09x8MossSection.jpg / Polytrichum moss section, stained with dyes and viewed with a light microscope. The thin cell filaments at the top are the edges of plate-like structures that function in photosynthesis. Spaces between the plates allow penetration of carbon dioxide. The tops of the plates are coated with a cuticle that helps prevent water loss. (micrograph)
16_11x1MatureFern.jpg / Life cycle of a fern: mature fern. A portion of a sporophyte of Polypodium sp. growing across a log, and pulled off to show four leaves (fronds) arising from the stem (rhizome), and the fuzzy dark adventitious roots that are growing from the rhizome.
16_11x2FernSorus.jpg / Life cycle of a fern: sorus of holly fern, Cyrtomium sp. A single sorus of sporangia on the underside of a leaf of holly fern. The sorus consists of numerous sporangia, and it is covered by an umbrella-like indusium. The stalks of the individual sporangia radiate from the central axis of the indusium. As the sporangia mature, the indusium dries out, exposing the sporangia and allowing them to release their spores. (Each sporangium contains a few dozen spores.) The individual sporangia seen here look like little green to brown balls. The greener sporangia are younger, and the browner ones are more mature. High power on a dissecting scope.