Africa
*** Linear Model ***
Call: lm(formula = LXfod ~ Lprfood + LGDPeu + LNTL, data = afrregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.06335 -0.02102 -0.008746 0.0244 0.07167
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 4.2262 1.7580 2.4040 0.0472
Lprfood 0.3382 0.1230 2.7490 0.0285
LGDPeu 0.7183 0.0974 7.3767 0.0002
LNTL -0.1898 0.0685 -2.7700 0.0277
Residual standard error: 0.04331 on 7 degrees of freedom
Multiple R-Squared: 0.9543
F-statistic: 48.73 on 3 and 7 degrees of freedom, the p-value is 0.00004662
*** Linear Model ***
Call: lm(formula = LXfod ~ Lprfood + LNTL + LGDP.POP, data = afrregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.07284 -0.02089 -0.006764 0.02577 0.06688
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 13.5276 0.9077 14.9025 0.0000
Lprfood 0.3214 0.1289 2.4925 0.0414
LNTL -0.1885 0.0714 -2.6415 0.0334
LGDP.POP 0.7598 0.1077 7.0550 0.0002
Residual standard error: 0.04505 on 7 degrees of freedom
Multiple R-Squared: 0.9506
F-statistic: 44.87 on 3 and 7 degrees of freedom, the p-value is 0.00006129
*** Linear Model ***
Call: lm(formula = LXar ~ LPRAGR, data = afrregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.4589 -0.08335 -0.01284 0.02165 0.8828
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 1.6123 5.3789 0.2998 0.7712
LPRAGR 2.9506 1.2128 2.4329 0.0378
Residual standard error: 0.3639 on 9 degrees of freedom
Multiple R-Squared: 0.3968
F-statistic: 5.919 on 1 and 9 degrees of freedom, the p-value is 0.0378
*** Linear Model ***
Call: lm(formula = LXar ~ LPRAGR, data = afrregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.4589 -0.08335 -0.01284 0.02165 0.8828
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 1.6123 5.3789 0.2998 0.7712
LPRAGR 2.9506 1.2128 2.4329 0.0378
Residual standard error: 0.3639 on 9 degrees of freedom
Multiple R-Squared: 0.3968
F-statistic: 5.919 on 1 and 9 degrees of freedom, the p-value is 0.0378
East
*** Linear Model ***
Call: lm(formula = LXfod ~ LGDPeu + LPOPeu, data = AfrESTregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.06687 -0.0439 -0.02831 0.05091 0.08902
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 234.0653 42.2410 5.5412 0.0005
LGDPeu 1.1562 0.2145 5.3905 0.0007
LPOPeu -18.2746 3.4553 -5.2889 0.0007
Residual standard error: 0.06545 on 8 degrees of freedom
Multiple R-Squared: 0.797
F-statistic: 15.7 on 2 and 8 degrees of freedom, the p-value is 0.001698
*** Linear Model ***
Call: lm(formula = LXfod ~ Lprfood, data = AfrESTregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.1695 -0.058 -0.01621 0.03905 0.2027
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 11.5255 1.3173 8.7490 0.0000
Lprfood 0.6462 0.2775 2.3282 0.0449
Residual standard error: 0.1082 on 9 degrees of freedom
Multiple R-Squared: 0.3759
F-statistic: 5.42 on 1 and 9 degrees of freedom, the p-value is 0.04488
*** Linear Model ***
Call: lm(formula = LXar ~ LPRAGR + LPOPeu + LNTL, data = AfrESTregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.1141 -0.02684 0.002583 0.03489 0.1108
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) -297.0069 33.3044 -8.9179 0.0000
LPRAGR 0.8166 0.2724 2.9975 0.0200
LPOPeu 23.3917 2.4830 9.4207 0.0000
LNTL 0.1729 0.1143 1.5133 0.1740
Residual standard error: 0.06988 on 7 degrees of freedom
Multiple R-Squared: 0.9322
F-statistic: 32.08 on 3 and 7 degrees of freedom, the p-value is 0.0001839
*** Linear Model ***
Call: lm(formula = LXar ~ LGDP.POP, data = AfrESTregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.1927 -0.04803 0.01425 0.07628 0.1215
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 8.8821 0.6658 13.3410 0.0000
LGDP.POP 1.2528 0.2168 5.7775 0.0003
Residual standard error: 0.1091 on 9 degrees of freedom
Multiple R-Squared: 0.7876
F-statistic: 33.38 on 1 and 9 degrees of freedom, the p-value is 0.0002669
MEADDLE
*** Linear Model ***
Call: lm(formula = LXfod ~ LGDPeu + LPOPeu + LNTL, data = afrMEADregreg, na.action
= na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.124 -0.04293 0.01295 0.04623 0.1285
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 370.6495 56.3297 6.5800 0.0003
LGDPeu 1.3383 0.3056 4.3795 0.0032
LPOPeu -28.7679 4.6302 -6.2131 0.0004
LNTL -0.5596 0.1384 -4.0439 0.0049
Residual standard error: 0.08688 on 7 degrees of freedom
Multiple R-Squared: 0.902
F-statistic: 21.48 on 3 and 7 degrees of freedom, the p-value is 0.0006585
*** Linear Model ***
Call: lm(formula = LXfod ~ LNTL, data = afrMEADregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.3164 -0.1088 -0.02726 0.1164 0.3296
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 17.8419 2.2192 8.0398 0.0000
LNTL -0.6162 0.2819 -2.1858 0.0566
Residual standard error: 0.1978 on 9 degrees of freedom
Multiple R-Squared: 0.3468
F-statistic: 4.778 on 1 and 9 degrees of freedom, the p-value is 0.05664
*** Linear Model ***
Call: lm(formula = LXar ~ LGDPeu + LPOPeu, data = afrMEADregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.1405 -0.08184 -0.01028 0.07854 0.1676
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 190.9200 78.2338 2.4404 0.0405
LGDPeu 1.2916 0.3973 3.2512 0.0117
LPOPeu -15.2280 6.3994 -2.3796 0.0446
Residual standard error: 0.1212 on 8 degrees of freedom
Multiple R-Squared: 0.5745
F-statistic: 5.401 on 2 and 8 degrees of freedom, the p-value is 0.03277
*** Linear Model ***
Call: lm(formula = LXar ~ LGDP.POP, data = afrMEADregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.2424 -0.09636 -0.01888 0.0753 0.2166
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 11.5749 0.8979 12.8910 0.0000
LGDP.POP 0.5675 0.2925 1.9405 0.0842
Residual standard error: 0.1471 on 9 degrees of freedom
Multiple R-Squared: 0.295
F-statistic: 3.766 on 1 and 9 degrees of freedom, the p-value is 0.08424
NORD
*** Linear Model ***
Call: lm(formula = LXfod ~ LGDPeu, data = afrNORDregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.1118 -0.02785 0.009004 0.03326 0.07126
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) -5.8752 1.7990 -3.2658 0.0097
LGDPeu 1.2543 0.1118 11.2224 0.0000
Residual standard error: 0.05918 on 9 degrees of freedom
Multiple R-Squared: 0.9333
F-statistic: 125.9 on 1 and 9 degrees of freedom, the p-value is 1.36e-006
*** Linear Model ***
Call: lm(formula = LXfod ~ LNTL + LGDP.POP, data = afrNORDregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.1029 -0.03522 0.01259 0.03423 0.05903
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 8.9457 0.9120 9.8085 0.0000
LNTL 0.1356 0.0872 1.5556 0.1584
LGDP.POP 1.4024 0.1216 11.5310 0.0000
Residual standard error: 0.05511 on 8 degrees of freedom
Multiple R-Squared: 0.9486
F-statistic: 73.81 on 2 and 8 degrees of freedom, the p-value is 6.986e-006
*** Linear Model ***
Call: lm(formula = LXar ~ LGDPeu, data = afrNORDregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.3515 -0.0407 -0.01841 0.0678 0.2647
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) -5.1034 4.8994 -1.0416 0.3248
LGDPeu 1.0961 0.3044 3.6008 0.0057
Residual standard error: 0.1612 on 9 degrees of freedom
Multiple R-Squared: 0.5903
F-statistic: 12.97 on 1 and 9 degrees of freedom, the p-value is 0.005741
*** Linear Model ***
Call: lm(formula = LXar ~ LGDP.POP, data = afrNORDregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.3612 -0.03978 -0.009312 0.06851 0.2533
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 9.0102 0.9882 9.1180 0.0000
LGDP.POP 1.1503 0.3219 3.5738 0.0060
Residual standard error: 0.1619 on 9 degrees of freedom
Multiple R-Squared: 0.5866
F-statistic: 12.77 on 1 and 9 degrees of freedom, the p-value is 0.005988
SUD
*** Linear Model ***
Call: lm(formula = LXfod ~ Lprfood + LGDPeu + LPOPeu, data = afrSUDregreg, na.action
= na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.07701 -0.01514 -0.008201 0.01644 0.06708
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) -285.9780 32.5271 -8.7920 0.0000
Lprfood -0.2208 0.1429 -1.5452 0.1662
LGDPeu 0.5985 0.1816 3.2956 0.0132
LPOPeu 22.3679 2.6629 8.3999 0.0001
Residual standard error: 0.04455 on 7 degrees of freedom
Multiple R-Squared: 0.9862
F-statistic: 166.8 on 3 and 7 degrees of freedom, the p-value is 7.146e-007
*** Linear Model ***
Call: lm(formula = LXfod ~ Lprfood + LGDP.POP, data = afrSUDregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.3281 -0.009917 0.04141 0.0693 0.1314
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 11.7715 1.8320 6.4255 0.0002
Lprfood -0.8155 0.4289 -1.9013 0.0938
LGDP.POP 1.9945 0.3324 6.0008 0.0003
Residual standard error: 0.1501 on 8 degrees of freedom
Multiple R-Squared: 0.821
F-statistic: 18.34 on 2 and 8 degrees of freedom, the p-value is 0.001027
*** Linear Model ***
Call: lm(formula = LXar ~ LPRAGR + LPOPeu, data = afrSUDregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.1232 -0.05942 0.003525 0.04073 0.1561
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) -63.3556 38.5690 -1.6427 0.1391
LPRAGR 1.0554 0.3201 3.2971 0.0109
LPOPeu 5.4920 2.9220 1.8795 0.0970
Residual standard error: 0.09045 on 8 degrees of freedom
Multiple R-Squared: 0.5906
F-statistic: 5.77 on 2 and 8 degrees of freedom, the p-value is 0.0281
*** Linear Model ***
Call: lm(formula = LXar ~ LPRAGR + LGDP.POP, data = afrSUDregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.1316 -0.05273 -0.007906 0.05161 0.1513
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 8.4258 1.3956 6.0375 0.0003
LPRAGR 0.7713 0.3070 2.5119 0.0363
LGDP.POP 0.3355 0.1832 1.8320 0.1043
Residual standard error: 0.09115 on 8 degrees of freedom
Multiple R-Squared: 0.5842
F-statistic: 5.621 on 2 and 8 degrees of freedom, the p-value is 0.02988
WEST
*** Linear Model ***
Call: lm(formula = LXfod ~ LGDPeu + LNTL, data = afrWESTregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.2345 -0.05798 -0.009451 0.0939 0.1394
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 9.6175 5.3337 1.8032 0.1090
LGDPeu 0.5205 0.2749 1.8932 0.0950
LNTL -0.4058 0.2074 -1.9565 0.0861
Residual standard error: 0.1315 on 8 degrees of freedom
Multiple R-Squared: 0.6189
F-statistic: 6.496 on 2 and 8 degrees of freedom, the p-value is 0.02109
*** Linear Model ***
Call: lm(formula = LXfod ~ LNTL + LGDP.POP, data = afrWESTregreg, na.action =
na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.2273 -0.05676 -0.01276 0.09207 0.1358
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 16.2178 2.1505 7.5415 0.0001
LNTL -0.3994 0.2055 -1.9435 0.0879
LGDP.POP 0.5629 0.2868 1.9631 0.0853
Residual standard error: 0.1299 on 8 degrees of freedom
Multiple R-Squared: 0.6276
F-statistic: 6.74 on 2 and 8 degrees of freedom, the p-value is 0.01924
*** Linear Model ***
Call: lm(formula = LXar ~ LPRAGR + LGDPeu + LPOPeu, data = afrWESTregreg, na.action
= na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.232 -0.0667 -0.01399 0.08669 0.1403
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 202.4726 134.6402 1.5038 0.1763
LPRAGR 1.1808 0.6913 1.7080 0.1314
LGDPeu 1.0308 0.6402 1.6101 0.1514
LPOPeu -16.2097 10.8759 -1.4904 0.1797
Residual standard error: 0.135 on 7 degrees of freedom
Multiple R-Squared: 0.7601
F-statistic: 7.393 on 3 and 7 degrees of freedom, the p-value is 0.0142
*** Linear Model ***
Call: lm(formula = LXar ~ LPRAGR, data = afrWESTregreg, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-0.2708 -0.07148 -0.004418 0.1043 0.1673
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 4.2865 2.0606 2.0802 0.0672
LPRAGR 1.9914 0.4646 4.2863 0.0020
Residual standard error: 0.1394 on 9 degrees of freedom
Multiple R-Squared: 0.6712
F-statistic: 18.37 on 1 and 9 degrees of freedom, the p-value is 0.002031