A reactive transport model for mercury fate in soil – Application to different anthropogenic pollution sources

Bertrand LETERMEa, Philippe BLANCb and Diederik JACQUESa

aPerformance Assessments, Institute for Environment, Health, and Safety, Belgian NuclearResearch Centre (SCK•CEN), Boeretang 200, 2400 Mol, Belgium

bD3E/BGE, Bureau de Recherches Géologiques et Minières (BRGM), Av. C. Guillemin 3, BP6009, 45060 Orleans, France

Corresponding author : Bertrand LETERME (; tel. +3214333124)

Supplementary Material

Selection of the Hg species for the Thermoddem database

The selection for mercury species thermodynamic data was processed according to guidelines described by Blanc et al.(2012). In the present case, the selection process is fully detailed inBlanc (2013), but this appendix gives a brief overview of the selection process and the verification of the database obtained.

The main sources for the selection of thermodynamic data were:

-the CODATA(Cox et al. 1989) selection, for primary master species and the element entropies;

-the Hg-O-H2O system was refined by taking into account the contributions of Baes and Mesmer (1976), Bessinger and Apps (2005) and finally Shock et al. (1997);

-sulfur was added to the chemical system investigated. The main source of data then was from Bessinger and Apps (2005);

-finally, we could extend the investigation to the Cl, P2O5, CO2 and SO3 components thanks to the compilation of Powell et al. (2005).

In the Thermoddem selection process, internal consistency was first ensured by selecting elements entropies from the CODATA review, which is already consistent. Thereafter, the verification was held on essentially by drawing predominance diagrams.Thus, the selection of Hg species was actually done in a relatively large chemical system, but the verification wasperformed on restrained chemical sub-systems.In this way, it is possible to detect the contradictions or the errors with respect to literature results.

In the verification of the Hg-Cl-O-H2O sub-system for example, the diagram obtained at 25°C (Fig. 1) is essentially consistent with Powell et al. (2005)calculations in the same context. The diagramincludes the HgOHCl(aq) complex, which stability domains appears between those of HgCl2(aq) and Hg(OH)2(aq) in the 3.5-9 pH range, consistently with the calculations of Baes and Mesmer (1976).

Fig.1 Predominance diagram in the Hg-O-Cl-H2O sub-system, at 25°C, [Cl]T = 10-2M. Source: Blanc (2013)

A few properties were refined because of a lack of experimental data. The solubility of HgO(cr) was investigated as a function of temperature in order to check the properties of both this solid phase and the main aqueous complex Hg(OH)2(aq). As reported by Baes and Mesmer (1976) the solid has three polymorphs: yellow and red orthorhombic and hexagonal forms. In Fig. 2, the LogK(T) function of HgO(cr) is calculated by using the CODOTA selection based on calorimetric measurements for the red orthorhombic HgO phase. The experimental solubilities are gathered inFig. 2 without any polymorph distinction. Indeed, the scattering of the experimental points is not related to the polymorph type and it would prevent to make an accurate distinction. Concerning the aqueous complex Hg(OH)2(aq),based onFig. 1 we were able to slightly adjust the thermodynamic properties from Bessinger and Apps (2005), with a modification of the equilibrium constant from −6.17 to −6.08 and of its entropy from 162 to 156J/mol.K.

Tables 1 and 2gather the properties collected from the literature or calculated for internal consistency. In Table 1, the a1, a2, a3, a4, c1, c2 and ω correspond to the HKF parameters (Helgeson et al. 1981). In Table 2, the a, b and c coefficient are related to a Maier-Kelley polynomial expression for the Cp(T) function were Cp(T) = a + bT + c/T².

Fig.2 HgO,cr – Hg(OH)2(aq) equilibrium as a function of temperature

1

Table 1 Thermodynamic properties for aqueous complexes

Specie / G°f
kJ/mol / H°f
kJ/mol / S°
J/mol.K / Cp
J/mol.K / a1*10-2
J/mol.bar / a2
J/mol / a3*10-4
J.K/mol.bar / a4
J.K/mol / c1
J/mol.K / c2*10-4
J*K/mol / *10-5
J/mol / References
Hg,aq / 37.12 / 12.50 / -6.65 / 410.74 / 17.93 / 11.21 / 19.71 / -12.09 / 263.83 / 70.97 / -0.22 / (a)
Hg+2 / 164.67 / 170.21 / -36.19 / -2.20 / -38.00 / 39.00 / -10.10 / 75.60 / -10.80 / 4.80 / (b), (c)
Hg2+2 / 153.57 / 166.87 / 65.74 / 16.80 / 8.60 / 20.70 / -12.00 / 91.20 / -0.90 / 3.40 / (b), (d)
Hg(OH)+ / -53.07 / -32.38 / 69.87 / 5.20 / -19.70 / 31.70 / -10.80 / 151.40 / 26.90 / 1.30 / (d), (e)
Hg(OH)2,aq / -274.94 / -351.18 / 156.00 / 73.00 / 45.30 / 78.00 / -6.50 / -14.90 / 67.00 / 2.10 / -0.20 / This work, (a)
HHgO2- / -189.17 / -119.91 / 9.62 / 7.60 / -14.00 / 29.60 / -11.00 / 15.70 / -37.60 / 6.70 / (d), (e)
Hg2(OH)+3 / -55.03 / (f)
Hg3(OH)3+3 / -180.08 / (e)
HgOHCl,aq / -226.87 / -282.70 / 129.76 / (e)
HgCl+ / -7.71 / -21.84 / 48.83 / 10.40 / -7.10 / 26.80 / -11.30 / 136.00 / 20.60 / 1.60 / (e), (g)
HgCl2,aq / -177.57 / -58.39 / 103.09 / 25.20 / 28.90 / 12.70 / -12.80 / 203.50 / 49.60 / -0.20 / (e), (g)
HgCl3- / -314.95 / -103.80 / 127.65 / 43.90 / 74.70 / -5.30 / -14.70 / 326.50 / 76.20 / 4.90 / (e), (g)
HgCl4-2 / -448.22 / -159.22 / 118.66 / 65.20 / 126.70 / -25.80 / -16.90 / 458.40 / 100.40 / 11.70 / (e), (g)
Hg(HS)2,aq / -37.79 / -56.50 / 207.94 / 59.11 / 111.78 / -19.70 / -16.25 / 110.52 / 17.31 / -0.16 / 59.11 / (a)
HgS(HS)- / -2.80 / -38.52 / 150.88 / 43.14 / 72.79 / -4.42 / -14.64 / 98.44 / -1.87 / 4.50 / 43.14 / (a)
HgS2-2 / 44.58 / (h)
HgSO4,aq / -587.33 / (i)
HgCO3,aq / -503.56 / (i)
Hg(OH)CO3- / -706.48 / (i)
HgHCO3+ / -528.27 / (i)
HgHPO4,aq / -981.55 / (i)
HgPO4- / -949.87 / (i)
HgF+ / -126.37 / -165.34 / -18.77 / -0.21 / -33.05 / 37.02 / -10.26 / 156.06 / 24.24 / 2.60 / (g)
(a) Bessinger and Apps (2005); (b) Cox et al. (1989); (c) Shock and Helgeson (1988); (d) Shock et al. (1997); (e) Baes and Mesmer (1976); (f) Arnek and Kakolowicz (1967); (g) Sverjensky et al. (1997); (h) Benoit et al. (1999); (i) Powell et al. (2005)

1

Table 2 Thermodynamic properties for mercury bearing minerals and gases

Species / G0f
kJ/mol / H0f
kJ/mol / S0
J/mol.K / Cp 25°C
J/mol.K / a
J/mol.K / b*103
J/mol.K² / c*10-5
J/mol/K / V
cm3/mol / References
Hg,l / 0.000 / 0.00 / 75.90 / 20.98 / (a), (b)
Hg,g / 31.84 / 61.38 / 174.97 / 20.79 / (a)
HgO,cr / -58.52 / -90.79 / 70.25 / 44.06 / 42.09 / 21.93 / -4.06 / 19.32 / (a), (b)
HgS,cr
Cinnabar / -45.73 / -53.35 / 82.82 / 48.41 / 46.22 / 15.52 / -2.17 / 28.42 / (c)
HgS,cr
Metacinnabar / -43.53 / -48.98 / 89.68 / 46.37 / 49.21 / 11.95 / -5.69 / 30.17 / (c)
HgCl2,cr
Calomel / -210.73 / -265.37 / 191.60 / 101.97 / 97.19 / 26.28 / -2.71 / 32.94 / (a), (d)
Hg2SO4 / -625.78 / -743.09 / 200.70 / 132.33 / 103.97 / 131.08 / -9.53 / 65.77 / (a), (e)
HgCO3.2HgO,cr / -799.96 / (f)
Hg3(PO4)2,cr / -1838.38 / (f)
(HgOH)3PO4,cr / -1367.06 / (f)
HgHPO4,cr / -1006.09 / (f)
Hg(CH3)2,g / 146.10 / 94.39 / 306 / 83.30 / (g)
(a) Cox et al. (1989); (b) Chase (1998); (c) Helgeson et al.(1978); (d) Chase et al. (1985); (e) Barin et al. (1977); (f) Powell et al. (2005); (g) 1982 Wagman et al. (1982)

References

Arnek R, Kakolowicz W, Åkeson Å, Norin T, Eriksson G, Blinc R, Paušak S, Ehrenberg L, Dumanović J (1967) Thermochemical Studies of Hydrolytic Reactions. 3. A Thermochemical Study of Hydrolysed Hg(ClO4)2 Solutions. Acta Chemica Scandinavica 21:1449-1456. doi:10.3891/acta.chem.scand.21-1449

Aurivillius K, von Heidenstam O, Nilsson R, Olsen GE, Pedersen C, Toft J (1961) On the Stability Relations and Solubilities of Hexagonal and Orthorhombic Mercury(II)oxide. Acta Chemica Scandinavica 15:1993-1998. doi:10.3891/acta.chem.scand.15-1993

Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

Barin I, Knacke O, Kubaschewski O (1977) Thermochemical Properties of Inorganic Substances. Ergänzungslieferung. Von I. Barin, O. Knacke und O. Kubaschewski. Springer-Verlag, Berlin - Heidelberg - New York, und Verlag Stahleisen mbH, Düsseldorf 1977. 1. Aufl., LXXXVIII, 861 S., 861 Tab., Ln., DM 170,-.

Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters. Environmental Science & Technology 33 (6):951-957. doi:10.1021/es9808200

Bessinger B, Apps JA (2005) The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver.

Blanc P (2013) Mercury associated physical and chemical constants: updating of the THERMODDEM database, IMaHg project, Rapport BRGM RP-61299-FR, 32p.

Blanc P, Lassin A, Piantone P, Azaroual M, Jacquemet N, Fabbri A, Gaucher EC (2012) Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Applied Geochemistry 27 (10):2107-2116. doi:10.1016/j.apgeochem.2012.06.002

Chase MW (1998) NIST-JANAF thermochemical tables. Part I, Part II. American Chemical Society ; American Institute of Physics for the National Institute of Standards and Technology, [Washington, D.C.]; Woodbury, N.Y.

Chase MW, Davies CA, Downey JR, Furip DJ, McDonald RA, Syverud AN (1985) JANAF Thermochemical Tables, 3rd. ed. 14 (Suppl. 1)

Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics. Hemisphere Pub. Corp.,

Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and Critique of the Thermodynamic Properties of Rock-Forming Minerals. American Journal of Science 278:1-229

Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb. American Journal of Science 281 (10):1249-1516. doi:10.2475/ajs.281.10.1249

Hocsman A, Di Nezio S, Charlet L, Avena M (2006) On the mechanisms of dissolution of montroydite [HgO(s)]: dependence of the dissolution rate on pH, temperature, and stirring rate. Journal of Colloid and Interface Science 297 (2):696-704. doi:10.1016/j.jcis.2005.11.020

Khodakovskii IL, Shikina ND (1981) Khodakovskii, I.L., Shikina, N.D., 1981. The role of carbonate complexes in mercury transport in hydrothermal solutions (experimental studies and thermodynamic analysis). Geochemistry International 18:32-43

Powell KJ, Brown PL, Byrne RH, Gajda Ts, Hefter G, Sjöberg S, Wanner H (2005) Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+–Cl–, OH–, CO32–, SO42–, and PO43– aqueous systems (IUPAC Technical Report). Pure and Applied Chemistry 77 (4):739-800. doi:10.1351/pac200577040739

Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochimica et Cosmochimica Acta 52 (8):2009-2036. doi:10.1016/0016-7037(88)90181-0

Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta 61 (5):907-950. doi:10.1016/s0016-7037(96)00339-0

Sverjensky DA, Shock EL, Helgeson HC (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000 degrees C and 5 kb. Geochimica et Cosmochimica Acta 61 (7):1359-1412

Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Balley SM, Churney KL, Nuttal RL (1982) NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units. Journal of physical and chemical reference data 11 (Suppl. 2):1-392