Ch 2.5 Transformations of Functions.

Basic Functions and Their Graphs

Vertical Translations of Graphs

Consider a function defined byy=f(x). Letkrepresent a positive real number.

·  The graph ofy=f(x) +kis the graph ofy=f(x) shiftedkunitsupward.

·  The graph ofy=f(x) −kis the graph ofy=f(x) shiftedkunitsdownward.

Horizontal Translations of Graphs

Consider a function defined byy=f(x). Lethrepresent a positive real number.

·  The graph ofy=f(x−h) is the graph ofy=f(x) shiftedhunits to theright.

·  The graph ofy=f(x+h) is the graph ofy=f(x) shiftedhunits to theleft.

Reflections Across thex- andy-Axes

Consider a function defined byy=f(x).

·  The graph ofy= −f(x) is the graph ofy=f(x) reflected across thex-axis.

·  The graph ofy=f(−x) is the graph ofy=f(x) reflected across they-axis.

Vertical Shrinking and Stretching of Graphs

Consider a function defined byy=f(x). Letarepresent a positive real number.

·  Ifa> 1, then the graph ofy=af(x) is the graph ofy=f(x) stretched vertically by a factor ofa.

·  If 0 <a< 1, then the graph ofy=af(x) is the graph ofy=f(x) shrunk vertically by a factor ofa.

Note:For any point (x,y) on the graph ofy=f(x), the point (x,ay) is on the graph ofy=af(x).

Horizontal Shrinking and Stretching of Graphs

Consider a function defined byy=f(x). Letarepresent a positive real number.

·  Ifa> 1, then the graph ofy=f(ax) is the graph ofy=f(x) shrunk horizontally by a factor of.

·  If 0 <a< 1, then the graph ofy=f(ax) is the graph ofy=f(x) stretched horizontally by a factor of.

Note:For any point (x,y) on the graph ofy=f(x), the pointis on the graph ofy=f(ax).

Ex1. Use translations to graph the given functions.

a.  b. gx=(x+3)2 c.

d.  h(x) =x3+ 2 e. f.

Ex2. Use translations to graph the given functions.

The graph ofy=f(x) is shown. Graph

a.  y=f(2x)

b. 

Ex2. Use translations to graph the given functions.

The graph ofy=f(x) is given.

a.  Graphy= −f(x).

b.  Graphy=f(−x).

Ex2. Use translations to graph the given functions.

a.  b. c. v(x) = −(x+ 2)2+ 1

d. e. f.