Appendix: metabolic network model construction
The main metabolic pathways by which carbon energy sources were used for the production of energy and carbon skeleton needed for the synthesis of intermediary metabolites, building blocks, and end products were considered for streptomyces in a reaction network. In addition to the main catabolic and anabolic pathways, the secondary metabolism involving daptomycin production was included in this network. Furthermore, ammonia and sulfate assimilation reactions were linked to the metabolism. Moreover, in case no specific information for Streptomyces roseosporus was found, corresponding data of closely related streptomyces (e.g., Streptomyces lividans) were included, and data obtained for bacteria (e.g., Escherichia coli) were added when necessary. This reaction network includes Embden-Meyerhof-Parnas pathway (EMP) and pentose phosphate pathways (PPP), tricarboxylic acid cycle (TCA), anaplerotic reactions, ammonia and sulfate assimilation, electron transport reactions, folic acid and thioredoxin reactions. The biosynthesis of aromatic, aspartate, glutamate, pyruvate, and serine family amino acids and histidine, pyrimidine, and purine nucleotides, and the biosynthesis of macromolecular components of biomass such as RNA, DNA, protein, fatty acids, phospholipids, carbohydrate, as well as daptomycin production were added in the network. The anabolic reactions for S. roseosporus for protein, lipid, RNA, DNA, and biomass synthesis were taken from the reported information for Streptomyces coelicolor A3(2), Streptomyces avermitilis and E. coli at the specific growth rate of 0.1 h–1 [1–5].
Although the macromolecular biomass composition changed with the growth rate [5], it was considered constant as the impact of these changes on the intracellular flux distributions was negligible. In this research, a single reaction based on a fixed biomass composition was employed for the formation of biomass throughout the fermentation. The Entener–Doudoroff (ED) pathway in streptomyces was not taken into consideration in the model. The glyoxylate pathway in S. roseosporus was also inactive. The operational P/O ratios for the oxidation processes in S. roseosporus in our simulations were assumed 2 and 1 for NADH and FADH2, respectively. CO2, NH3, in the form of NH4+, and phosphate transporting from the cell to the broth and from the broth to the cell were also assumed to be by passive transport. Furthermore, pathway synthesizing 3-methy-glutamate was also added [6–7].
Appendix A: Abbreviations used in metabolic reactions
3PG / 3-Phospho-D-glycerateAC / Acetate
ACACP / Acyl-[acyl-carrier protein]
ACAL / Acetaldehyde
ACCOA / Acetyl-CoA
ACP / Acyl-carrier protein
ADN / Adenosine
ADP / Adenosine diphosphate
AGL3P / Acyl-sn-glycerol 3-phosphate
AICAR / 1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide
AKG / 2-Oxoglutarate
ALA / L-Alanine
ALAALA / D-alanyl-D-alanine
AMP / Adenosine monophosphate
AN / Anthranilate
ARG / L-Arginine
ASN / L-Asparagine
ASP / L-Aspartate
ASPSA / L-Aspartate 4-semialdehyde
ATP / Adenosine triphosphate
BIOMASS / Biomass
C140ACP / Myristoyl-[acyl-carrier protein]
C150ACP / Pentadecanoyl-[acyl-carrier protein]
C160ACP / Hexadecanoyl-[acyl-carrier protein]
C170ACP / Heptadecanoyl-[acyl-carrier protein]
C181ACP / Oleoyl-[acyl-carrier protein]
CAP / Carbamoyl phosphate
CARBOHYDRATE / Carbohydrates (biomass component)
CDP / Cytidine diphosphate
CDPDG / CDP-diacylglycerol
CDPGL / CDP-glycerol
CHOR / Chorismate
CIT / Citrate
CL / Cardiolipin (biomass component)
CMP / Cytidine monophosphate
CO2 / Carbondioxide
COA / Coenzyme A
CTP / Cytidine triphosphate
CYS / L-Cysteine
DALA / D-alanine
DAPTOMYCIN / Daptomycin
DASN / D-Asparagine
DATP / DATP
DCTP / DCTP
DEC / Decanoic acid
DGLU / D-Glutamate
DGTP / DGTP
DHAP / Glycerone phosphate
DHF / Dihydrofolate
DNA / Deoxyribonucleic acid
DSER / D-Serine
DTTP / DTTP
E4P / D-Erythrose 4-phosphate
F6P / beta-D-Fructose 6-phosphate
FAD / Flavin adenine dinucleotide oxidized
FADH2 / Flavin adenine dinucleotide reduced
FGAM / 2-(Formamido)-N1-(5'-phosphoribosyl)acetamidine
FKYN / L-Formylkynurenine
FOR / Formate
FTHF / 10-Formyltetrahydrofolate
FUM / Fumarate
G3P / D-Glyceraldehyde 3-phosphate
G6P / alpha-D-Glucose 6-phosphate
GDP / Guanosine diphosphate
GL3P / sn-Glycerol-3-phosphate
GLC / alpha-D-Glucose
GLN / L-Glutamine
GLU / L-Glutamate
GLY / Glycine
GTP / Guanosine triphosphate
H2S / Hydrogen sulfide
HCYS / Homocysteine
HIS / L-Histidine
HSER / L-Homoserine
ICIT / Isocitrate
ILE / L-Isoleucine
IMP / Inosine monophosphate
KYN / L-Kynurenine
LAC / (R)-Lactate, D-Lactate
LEU / L-Leucine
LYS / L-Lysine
MAKG / 3-methyl-2-oxoglutarate
MAL / Malate
MALACP / Malonyl-[acyl-carrier protein]
MALCOA / Malonyl-CoA
MDAPIM / meso-2, 6-Diaminopimelate
MET / L-Methionine
METHF / 5, 10-Methenyltetrahydrofolate
METTHF / 5, 10-Methylenetetrahydrofolate
MGLU / 3-Methyl Glutamate
MTHF / 5-Methyltetrahydrofolate
NAD / Nicotinamide adenine dinucleotide oxidized
NADH / Nicotinamide adenine dinucleotide reduced
NADP / Nicotinamide adenine dinucleotide phosphate oxidized
NADPH / Nicotinamide adenine dinucleotide phosphate reduced
NH3 / Ammonia
O2 / Oxygen
OA / Oxaloacetate
OIVAL / (R)-2-Oxoisovalerate
ORN / L-Ornithine
OTHIO / Oxidized thioredoxin
PA / Phosphatidate
PE / Phosphatidylethanolamine
PEP / Phosphoenolpyruvate
PEPTIDOGLYCAN / Peptidoglycan (biomass component)
PG / Phosphatidylglycerol
PGP / Phosphatidylglycerophosphate
PHE / L-Phenylalanine
PHEN / Prephenate
PHOSPHOLIPID / Phospholipids (biomass component)
PI / Orthophosphate
POLYGP / 12-residues chain (teichoic acid component)
PPI / Pyrophosphate
PRO / L-Proline
PROTEIN / Proteins (biomass component)
PRPP / 5-Phospho-alpha-D-ribose 1-diphosphate
PS / Phosphatidylserine
PYR / Pyruvate
R5P / D-Ribose 5-phosphate
RL5P / D-Ribulose 5-phosphate
RNA / Ribonucleic acid
RTHIO / Reduced thioredoxin
S7P / Sedoheptulose 7-phosphate
SAH / S-Adenosyl-L-homocysteine
SAM / S-Adenosyl-L-methionine
SER / L-Serine
SUCC / Succinate
SUCCOA / Succinyl-CoA
TAG / Triacylglycerols (biomass component)
TEICH / Teichoic acid (biomass component)
THF / Tetrahydrofolate
THR / L-Threonine
TRP / L-Tryptophan
TYR / L-Tyrosine
UDP / Uridine diphosphate
UDPGAL / UDP-D-galactose
UDPNAG / UDP-N-acetyl-D-glucosamine
UDPNAM / UDP-N-acetylmuramate
UMP / Uridine monophosphate
UTP / Uridine triphosphate
VAL / L-Valine
X5P / D-Xylulose 5-phosphate
Appendix B: Metabolic reactions
Glycolysis Pathway
R1. GLC + ATP → G6P + ADP
R2. G6P ↔ F6P
R3. F6P + ATP ↔ G3P + DHAP + ADP
R4. DHAP ↔ G3P
R5. G3P + PI + NAD + ADP ↔ NADH + 3PG + ATP
R6. 3PG ↔ PEP
R7. PEP + ADP → PYR + ATP
Pentose Phosphate Pathway
R8. G6P + 2 NADP ↔ CO2 + RL5P + 2 NADPH
R9. RL5P ↔ R5P
R10. RL5P ↔ X5P
R11. R5P + X5P ↔ G3P + S7P
R12. X5P + E4P ↔ F6P + G3P
R13. G3P + S7P ↔ E4P + F6P
Branches from Glycolysis Pathway
R14. PYR + NAD + COA → ACCOA + CO2 + NADH
R15. PYR → ACAL + CO2
R16. NAD + ACAL ↔ AC + NADH
R17. PYR + NADH ↔ LAC + NAD
Anaplerotic Reactions
R18. PEP + CO2 + ADP → OA + ATP
R19. PYR + ATP + CO2 → ADP + OA + PI
R20. MAL + NAD → CO2 + NADH + PYR
TCA Cycle
R21. ACCOA + OA → COA + CIT
R22. CIT ↔ ICIT
R23. ICIT + NADP → NADPH + AKG + CO2
R24. AKG + NAD + COA ↔ CO2 + NADH + SUCCOA
R25. GDP + PI + SUCCOA ↔ GTP + SUCC + COA
R26. SUCC + FAD ↔ FUM + FADH2
R27. FUM ↔ MAL
R28. MAL + NAD ↔ NADH + OA
Biosynthesis of Serine Family Amino Acids
R29. 3PG + NAD + GLU → NADH + AKG + PI + SER
R30. THF + SER ↔ GLY + METTHF
R31. SER + ACCOA + H2S → COA + CYS + AC
Biosynthesis of Alanine Family Amino Acids
R32. PYR + NH3 + NADH ↔ ALA + NAD
R33. 2 PYR + NADPH → NADP + OIVAL + CO2
R34. OIVAL + GLU → AKG + VAL
R35. ACCOA + OIVAL + NAD + GLU → COA + NADH + CO2 + AKG + LEU
Biosynthesis of Histidine
R36. R5P + ATP ↔ PRPP + AMP
R37. PRPP + ATP + GLN + 2 NAD → 2 PPI + AKG + AICAR + PI + 2 NADH + HIS
Biosynthesis of Aspartic Family Amino Acids
R38. OA + GLU ↔ ASP + AKG
R39. ASP + ATP + GLN → GLU + ASN + AMP + PPI
R40. ASP + ATP + NADPH → ADP + NADP + PI + ASPSA
R41. ASPSA + NADPH → NADP + HSER
R42. HSER + ATP → ADP + THR + PI
R43. HSER + SUCCOA + CYS ↔ SUCC + HCYS + PYR + NH3 + COA
R44. HCYS + MTHF ↔ THF + MET
R45. THR + PYR + NADPH + GLU → CO2 + NH3 + NADP + AKG + ILE
Biosynthesis of Aromatic Family Amino Acids
R46. E4P + 2 PEP + NADPH + ATP → 4 PI + ADP + CHOR
R47. CHOR + GLN → GLU + PYR + AN
R48. AN + PRPP + SER → PPI + CO2 + G3P + TRP
R49. CHOR → PHEN
R50. PHEN + GLU → CO2 + AKG + PHE
R51. PHEN + NAD + GLU → AKG + TYR + CO2 + NADH
Biosynthesis of Glutamic Family Amino Acids
R52. AKG + NH3 + NADPH ↔ GLU + NADP
R53. GLU + NH3 + ATP → GLN + ADP + PI
R54. GLU + ATP + 2 NADPH + NADH → ADP + 2 NADP + NAD + PI + PRO
R55. ATP + NADPH + 2 GLU → ADP + NADP + PI + AKG + ORN
R56. GLN + 2 ATP + CO2 → GLU + CAP + 2 ADP + PI
R57. ASP + 2 ATP + CAP + NADPH + 2 GLU → ARG + FUM + AKG + AMP + PPI + 2 PI + ADP + NADP
R58. ASPSA + PYR + NADH + NADPH + SUCCOA + GLU → NAD + NADP + COA + AKG + SUCC + MDAPIM
R59. MDAPIM → LYS + CO2
Biosynthesis of D Family Amino Acids
R60. GLU ↔ DGLU
R61. ALA ↔ DALA
R62. SER ↔ DSER
R63. ASN ↔ DASN
Biosynthesis of Nonprotein Amino Acids
R64. ATP + MET → SAM + PPI + PI
R65. SAM + AKG → MAKG + SAH
R66. SAH → HCYS + ADN
R67. MAKG + VAL → MGLU + OIVAL
R68. TRP + O2 → FKYN
R69. FKYN → FOR + KYN
Biosynthesis of Nucleotides
R70. PRPP + 2 GLN + 2 ATP + GLY + FTHF → PPI + 2 GLU + 2 ADP + 2 PI + THF + FGAM
R71. FGAM + 3 ATP + CO2 + ASP → 3 ADP + 3 PI + FUM + AICAR
R72. AICAR + FTHF ↔ THF + IMP
R73. IMP + NAD + 2 ATP + GLN → GLU + AMP + PPI + GDP + NADH + ADP
R74. GDP + ATP ↔ GTP + ADP
R75. GDP + RTHIO + ATP → DGTP + OTHIO + ADP
R76. ADN + ATP ↔ AMP + ADP
R77. AMP + ATP → 2 ADP
R78. ATP + RTHIO → DATP + OTHIO
R79. CAP + ASP + NAD + PRPP → NADH + PPI + UMP + CO2 + PI
R80. ATP + UMP ↔ ADP + UMP
R81. ATP + UDP ↔ ADP + UTP
R82. ATP + UTP + NH3 → ADP + PI + CTP
R83. CDP + ATP ↔ CTP + ADP
R84. CDP + RTHIO + ATP → DCTP + OTHIO + ADP
R85. DCTP + METTHF → DHF + NH3 + DTTP
Folate biosynthesis and Interconversion of One-Carbon Units
R86. DHF + NADPH → NADP + THF
R87. THF + FOR + ATP → FTHF + PI + ADP
R88. FTHF ↔ METHF
R89. METHF + NADPH ↔ METTHF + NADP
R90. METTHF + FADH2 → MTHF + FAD
R91. OTHIO + NADPH → RTHIO + NADP
Biosynthesis of Carbohydrate
R92. F6P + GLN + ACCOA + UTP → GLU + COA + UDPNAG + PPI
R93. G6P + UTP → PPI + UDPGAL
Biosynthesis of Peptidoglycan
R94. UDPNAG + PEP + NADPH → UDPNAM + PI + NADP
R95. 2 DALA + ATP → ALAALA + ADP + PI
Biosynthesis of Triacylglycerol
R96. DHAP + NADH ↔ GL3P + NAD
R97. ACCOA + ATP + CO2 ↔ MALCOA + ADP + PI
R98. MALCOA + ACP → MALACP + COA
R99. ACCOA + ACP → ACACP + COA
R100. ACACP + 6 MALACP + 12 NADPH → 12 NADP + C140ACP + 6 CO2 + 6 ACP
R101. ACACP + 6.5 MALACP + 13 NADPH → 13 NADP + C150ACP + 6.5 CO2 + 6.5 ACP
R102. ACACP + 7 MALACP + 14 NADPH → 14 NADP + C160ACP + 7 CO2 + 7 ACP
R103. ACACP + 7.5 MALACP + 15 NADPH → 15 NADP + C170ACP + 7.5 CO2 + 7.5 ACP
R104. ACACP + 8 MALACP + 15 NADPH → 15 NADP + C181ACP + 8 CO2 + 8 ACP
Biosynthesis of Phospholipid
R105. GL3P + 0.094 C140ACP + 0.294 C150ACP + 0.262 C160ACP + 0.293 C170ACP + 0.057 C181ACP → AGL3P + ACP
R106. AGL3P + 0.094 C140ACP + 0.294 C150ACP + 0.262 C160ACP + 0.293 C170ACP + 0.057 C181ACP → PA + ACP
R107. PA + CTP ↔ CDPDG + PPI
R108. CDPDG + SER ↔ CMP + PS
R109. PS → PE + CO2
R110. CDPDG + GL3P ↔ CMP + PGP
R111. PGP → PI + PG
R112. CDPDG + PG → CMP + CL
Biosynthesis of Teichoic acid
R113. GL3P + CTP → PPI + CDPGL
R114. 12 CDPGL → 12 CMP + POLYGP
Maintenance Energy
R115. ATP → ADP + PI
R116. PPI → 2 PI
R117. NADH + 2 ADP + 2 PI + 0.5 O2 → 2 ATP + NAD
R118. FADH2 + ADP + PI + 0.5 O2 → ATP + FAD
R119. NADPH + NAD → NADP + NADH
R120. SO4 + 2 ATP + 4 NADPH → 2 ADP + H2S + 2 PI + 4 NADP
Biosynthesis of DNA
R121. 0.469 DATP + 1.149 DCTP + 0.469 DTTP + 1.149 DGTP + 4.4 ATP → 4.4 ADP + 4.4 PI + 3.236 PPI + DNA
Biosynthesis of Teichoic acid
R122. 0.518 POLYGP + 0.129 LYS + 0.129 UDPNAG + 0.129 ATP → TEICH + 0.129 UDP + 0.129 ADP + 0.129 PI
Biosynthesis of RNA
R123. 0.600 ATP + 0.826 GTP + 1.031 CTP + 0.662 UTP + 1.25 ATP → 1.25 ADP + 1.25 PI + RNA + 3.119 PPI
Biosynthesis of Peptidoglycan
R124. 1.007 UDPNAM + 1.197 UDPNAG + 1.900 ALAALA + 0.950 ALA + 1.140 MDAPIM + 1.014 DGLU + 0.973 GLY + 5.026 ATP → PEPTIDOGLYCAN + 0.950 DALA + 1.197 UDP + 1.007 UMP + 5.026 ADP + 5.026 PI
Biosynthesis of Phospholipid
R125. 1.089 PE + 0.250 PG + 0.052 CL → PHOSPHOLIPID
Biosynthesis of Triacylglycerol
R126. 1.244 GL3P + 0.050 C140ACP + 1.677 C150ACP + 0.421 C160ACP + 1.570 C170ACP + 0.014 C181ACP → TAG + 3.732 ACP + 1.244 PI
Biosynthesis of Protein
R127. 1.350 ALA + 0.352 ARG + 0.394 ASN + 0.391 ASP + 0.165 CYS + 0.382 GLN + 0.379 GLU + 2.015 GLY + 0.131 HIS + 0.477 ILE + 0.742 LEU + 0.499 LYS + 0.221 MET + 0.238 PHE + 0.422 PRO + 0.459 SER + 0.465 THR + 0.059 TRP + 0.159 TYR + 0.797 VAL + 40.0 ATP → 40.0 ADP + 40.0 PI + PROTEIN
Biosynthesis of Carbohydrate
R128. 1.897 UDPNAG + 3.794 UDPGAL → 5.691 UDP + CARBOHYDRATE
Biomass Synthesis
R129. 0.412 PROTEIN + 0.167 RNA + 0.036 DNA + 0.042 PHOSPHOLIPID + 0.033 TAG + 0.110 PEPTIDOGLYCAN + 0.044 CARBOHYDRATE + 0.066 TEICH + 47 ATP → BIOMASS + 47 ADP + 47 PI
Daptomycin Synthesis
R130. DEC + DALA + 2 GLY + 3 ASP + DASN + ORN + MGLU + DSER + THR + TRP + KYN + 14 ATP → DAPTOMYCIN + 14 ADP
References
- Arabolaza, A., Rodriguez, E. Altabe, S. Alvarez, H. & Gramajo, H. (2008). Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Applied and Environmental Microbiology, 74, 2573–2582.
- Ingraham, J. L., Maaløe, O., & Neidhardt, F. C. (1983). Growth of the bacterial cell, Sunderland, Sinnauer Associated.
- Kaddor, C., Biermann, K., Kalscheuer, R., & Steinbüchel, A. (2009). Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein. Applied Microbiology and Biotechnology, 84, 143–155.
- Olukoshi, E. R., & Packter, N. M. (1994). Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140, 931–943
- Shahab, N., Flett, F., Oliver, S. G., & Butler, P. R. (1996). Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r. Microbiology, 142, 1927–1935.
- Mahlert, C., Kopp, F., Thirlway, J., Micklefield, J., & Marahiel, M. A. (2007). Stereospecific enzymatic transformation of alpha-ketoglutarate to (2S,3R)-3-methyl glutamate during acidic lipopeptide biosynthesis. Journal of the American Chemical Society, 129, 12011–12018.
- Milne, C., Powell, A., Jim, J., Al Nakeeb, M., Smith, C. P., & Micklefield, J. (2006). Biosynthesis of the (2S,3R)-3-methyl glutamate residue of nonribosomal lipopeptides. Journal of the American Chemical Society, 128, 11250–11259.