Alford, D.P., Delaune, R.D., andLindau, C.W., 1997. Methane from Mississippi river deltaic plain wetlands, Biogeochemistry, 37, 227-236.

Amoroux, D., Roberts, G., Rapsomanikisand, S., and Andreae, M.O., 2002. Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea, Estuar. Coast. Shelf S., 54, 575-587.

Bange, H.W., Rapsomanikis, S., and Andreae, M.O., 1996. The Aegean Sea as a source of atmospheric nitrous oxide and methane, Mar. Chem.., 53, 41-49.

Bange, H.W., Dahlke, S., Ramesh, R., Meyer-Reil, L.-A. Rapsomanikis, S., and Andreae, M.O., 1998. Seasonal study of methane and nitrous oxide in the coastal waters of the southern Baltic Sea, Estuar. Coast. Shelf S., 47, 807-817.

Bartlett, K.B., Harriss, R.C., and Sebacher, D.I., 1985. Methane flux from coastal salt marshes, J. Geophys. Res. 90, 5710-5720.

Bartlett, K.B., Bartlett, D.S., Harriss, R.C., and Sebacher, D.L., 1987. Methane emissions along a salt marsh salinity gradient, Biogeochemistry, 4, 183-202.

Bartlett, K.B., Crill, P.M., Sebacher, D.I., Harris, R.C., Wilson, J.O.,and Melack, J.M., 1988. Methane flux from the central Amazonian floodplain, J. Geophys. Res., 39, 1571-1582.

Bartlett, K.B. andHarris, R.C., 1993. Review and assessment of methane emissions from wetlands, Chemosphere, 26, 261-320.

Bastviken, D., Ejlerstsson, J., and Tranvik, L., 2002. Measurement of methane oxidation in lakes - A comparison of methods, Environm. Sci. Technol., 36, 3354-3361.

Bastviken, D., Cole, J., Pace, M., and Tranvik, L., 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cy., 18, GB 4009, doi: 10.1029/2004GB002238.

Bates, T.S., Kelly, K.C., Johson, J.E., and Gammon, R.H., 1996. A reevaluation of the open ocean source of methane to the atmosphere, J. Geophys. Res., 101, 6953-6961.

Berner, U., Poggenburg, J., Faber., E., Quadfaser, P., and Frische, A., 2003.Methane in ocean waters of the Bay of Bengal: its sources and exchange with the atmosphere, Depp-Sea Res. Pt II, 50, 925-950.

Bianchi, T.S., Freer, M.E., and Wetzel, R.G., 1996. Temporal and spatial variability, and the role of dissolved organic carbon (DOC) in methane fluxes from the Sabine River Floodplain (Southeast Texas, U.S.A.), Arch. Hydrobiol., 136, 261-287.

Biswas, H., Mukhopadhyay, S.K., Sen, S., and Jana, T.K., 2007. Spatial and temporal patterns of methane dynamics in the tropical mangrove dominated estuary, NE coast of Bay of Bengal, India, J. Marine Syst., 68, 55-64.

Boon, P. I. and Mitchell, A., 1995. Methanogenesis in the sediments of an Australian freshwater wetland: Comparison with aerobic decay, and factors controlling methanogenesis, FEMS Microbiol. Ecol., 18, 175-190.

Boon, P. I., Mitchell, A., and Lee, K., 1997. Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia Hydrobiologia, 357, 73-87.

Bubier, J. L., Moore, T.R., and Roulet, N.T., 1993. Methane emissions from wetlands in the midboreal region of northern Ontario, Canada, Ecology, 74, 2240-2254.

Bubier, J. L., 1995. The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands, J. Ecol., 83, 403-420.

Bubier, J.L.,Moore, T., Savage, K., and Crill, P., 2005. A comparison of methane flux in a boreal landscape between a dry and a wet year, Global Biogeochem. Cy., 19, GB1023, doi: 10.1029/2004GB002351.

Casper, P., Maberly, S.C., Hall, G.H., and Finlay, B.J., 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere, Biogeochemistry, 49, 1-19.

Chang, T.C. and Yanga, S.S., 2003. Methane emission from wetlands in Taiwan, Atmos. Environm. , 37, 4551–4558.

Chasar, L. S., Chanton, J.P., Glaser, P.H., and Siegel, D.I., 2000.Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the Glacial Lake Agassiz Peatland Coplex, Ann. Bot., 86, 655-663.

Christensen, T.R., 1993. Methane emission from Arctic tundra, Biogeochemistry, 21, 117-139.

Clymo, R.S. and Reddaway, E.J.F., 1971. Productivity of Sphagnum (Bog-moss) and peat accumulation, Hydrobiologia 12, 181-192.

Dasselaar, A., Van Beusichem, M.L., and Oenema, O., 1999.Methane emissions from wet grasslands on peat soil in a nature preserve, Biogeochemistry, 44, 205-220.

De Angelis, M.A., and Lilley, M.D., 1987. Methane in surface waters of Oregon estuaries and rivers.Limnol. Oceanogr. 32: 716–722

DeLaune, R.D., Smith, C.J., and Patrick, W.H., 1983. Methane release from Gulf Coastal wetlands, Tellus,35B, 8-15.

Devol, A.H., Richey, J.E., Clark, W.A., andKing, S.L., 1988. Methane emissions to the troposphere from the Amazon Floodplain, J. Geophys. Res., 93, 1583-1592.

Devol, A.H., Richey, J.E., Forsberg, B.R., andMartinelli, L.A., 1990. Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere, J. Geophys Res., 95, 16417-16426.

Ding, W., Cai, Z., and Tsuruta, H., 2003. Diel variation in methane emissions from the stands of Carex lasiocarpa and Deyeuxia angustifolia in a cool temperate freshwater marsh, Atmos. Environm., 32, 181-188.

Ding, W., Cai, Z., Tsuruta, H., andLi, X., 2003. Key factors affecting spatial variation of methane emissions from freshwater marshes, Chemosphere, 51, 167-173.

Ding, W., Cai, Z., and Wang, D., 2004. Preliminary budget of methane emissions from natural wetlands in China, Atmos. Environm., 38, 751-759.

Ding, W., Cai, Z., and Tsuruta, H., 2005. Factors affecting seasonal variation of methane concentration in water in a freshwater marsh vegetated with Carex lasiocarpa, Biol. Fertil. Soils, 41, 1-8.

Ding, W., Cai, Z., Tsututa, H.,and Li, X., 2005. Plant species effects on methane emissions from freshwater marshes, Atmos. Environm., 39, 3199-3207.

Dise, N.B.,Gorham, E., and Verry, E.S., 1993. Environmental factors controlling methane emissions from peatlands in Northern Minnesota, J. Geophys. Res., 98, 10583-10594.

Duan, X., Wang, X., Mu, Y., andOuyang, Z., 2005.Seasonal and diurnal variations in methane emissions from WuliangsuLake in arid regions of China, Atmos. Environ., 39, 4479-4487.

Fallon, R.D., Harris, S., Hanson, R.S., and Brock, T.D., 1980. The role of methane in internal carbon cycling in LakeMendota during summer stratification, Limnol. Oceanogr., 25, 357-360.

Ferrón, S., Ortega, T., Gómez-Parra, A., and Forja, J.M., 2007.Seasonal study of dissolved CH4, CO2 and N2O in a shallow tidal system of the bay of Cádiz (SW Spain), J. Marine Syst., 66, 244-257.

Frenzel, P. and Karofeld, E., 2000.CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation, Biogeochemistry, 51, 91-112.

Friborg T.,Soegaard, H., Christensen, T.R., Lloyd, C.R., andPanikov, N.S., 2003. Siberian wetlands: Where a sink is a source, Geophys. Res. Lett., 30, 2129, doi: 10.1029/2003GL017797.

Gal´chenko, V.F., Dulov, L.E., Cramer, B., Konova, N.I., and Barysheva, S.V., 2001. Biochemical processes of methane cycle in the soils, bogs, and lakes of western Siberia, Microbiology, 70, 175-185.

Glenn, S., Heyes, A., andMoore, T.R., 1993. Methane and carbon dioxide fluxes from drained peatlands soils, Global Biogeochem. Cy., 7, 247-258.

Hargreaves, K. J. and Fowler, D., 1998. Quantifying the effects of water table and soil temperature on the emission of methane from peat wetland at the field scale, Atmos. Environm., 32, 3257-3282.

Harris, R.C., Sebacher, D.I., and Day, F.P., 1982. Methane flux in the Great Dismal Swamp, Nature 297, 673-674.

Heeschen, K.U., Keir, R.S., Rheder, G., Klatt, O., and Suess, E., 2004.Methane dynamics in the Weddell Sea determined via stable isotope ratios and CFC-11, Global Biogeochem. Cy.,18, GB2012,doi:1029/2003GB002151.

Heyer, J. and Berger, U., 2000. Methane emission from the coastal area in the Southern Baltic Sea, Estuar. Coast. Shelf S., 51, 13-30.

Heyer, J., Berguer, U., Kuzin, I.L., and Yakovlev, O.N., 2002. Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during thawing period, Tellus, 54B, 231-249.

Hirota, M., Tang, Y., Hu, Q., Hirata, S., Gato, T., Mo, W., Cao, G., and Mariko, S., 2004.Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland, Soil Biol. Biochem., 36, 737-748.

Holmes, M.E., Sansone, F.J., Rust, T.M., and Popp, B.N., 2000. Methane production, consumption, and air-sea exchange in the open ocean: An evolution based on carbon isotopic ratios, Global Biogeochem. Cy., 14, 1, 1-10.

Howard, D.L., Frea, J.I., and Pfiser, R.M., 1971. The potential for methane-carbon cycling in Lake Erie, Proc. 14th Conf. Great Lakes Res. (Int. Assoc. Great Lakes Res.),236-240.

Howes. B. L., Dacey, J.W.H., andTeal, J.M., 1985. Annual carbon mineralization and below- ground production of Spartina alterniflora in a New England salt marsh, Ecology, 66, 595-605.

Huang, G.H., Li, X.Z., Hu, Y.M.H., Shi, Y., and Xiao, D.N., 2005. Methane (CH4) emissions froma natural wetland of Northern China, J. Environm. Sci. Health, 40, 1227-1238.

Hughes, S., Dowrick, D.J., Freeman, C., Hudson, S.A., andReynolds, B., 1999. Methane emissions from a Gully mire in mid-Wales, UK, under consecutive summer water table drawdown, Environ. Sci. Technol., 33, 362-365.

Huttunen, J.T., Väisänen, T.S., Heikkinen, M., Hellsten, S., Nykänen, H., Nenonen, O., and Martikainen, P.J., 2002. Exchange of CO2, CH4 and NO2 between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forest, Plant Soil, 242, 137-146.

Huttunen, J.T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., and Martikainen, P.J., 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 52, 609-621.

Hyvönen, T., Ojala, A., Kankaala, P., and Martikainen, P.J., 1998. Methane release from stands of water horsetail (Equisetum fluviale) in a boreal lake, Freshwat. Biol., 40, 275-284.

Inubushi, K., Furukawa, Y., Hadi, A., Purnomi, E., and Tsuruta, H., 2003. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimatan, Chemosphere, 52, 603-608.

Joabsson, A. and Christensen, T.R., 2001. Methane emissions from wetlands and their relationship with vascular plants: an Arctic example, Glob. Change Biol., 7, 919-932.

Jones, M.B., 2000. Methane production and emission from papyrus-dominated wetlands, Verh. Internat. Verein. Limnol., 27, 1406-1409.

Juutinen, S., Alm, J., Martikainen, P., and Silvola, J., 2001.Effects of spring flood and water level draw-down on methane dynamics in the littoral zone of boreal lakes, Freshwat. Biol., 46, 855-869.

Juutinen, S., Alm, J., Larmola, T., Saarnio, S., Martikainen, P.J.,and Silvola, J., 2004.Stand-specific diurnal dynamics of CH4 fluxes in boreal lakes: Patterns and controls, J. Geophys. Res., 109, D19313, doi:10.1029/2004JD004782.

Käki, T., Ojala, A., and Kankaala, P., 2001. Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake, Aquat. Bot., 71, 259-271.

Kang, H. and Freeman, C., 2002. The influence of hydrochemistry on methane emissions from two contrasting northern wetlands, Water Air Soil Poll., 141, 263-272.

Kankaala, P., Käki, T., and Ojala, A., 2003. Quality of detritus impacts on spatial variation of methane emissions from littoral sediment of a boreal lake, Arch. Hydrobiol., 157, 47-66.

Kankaala, P., Ojala, A., and Käki, T., 2004.Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake, Biogeochemistry, 68, 297-311.

Kankaala, P., Käki, T., Mäkelä, S., Ojala, A., Pajunen, H., and Arvola, L., 2005. Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesotrophic lakes, Glob. Change Biol., 11, 145-153.

Keller, M., 1990. Biological sources and sinks of methane in tropical habitats and tropical atmospheric chemistry, Ph. D. dissertation, PrincetonUniversity and National Centre for Atmospheric Research, 216 pp.

Kelley, C.A. and Jeffrey, W.H., 2002. Dissolved methane concentration profiles and air-sea fluxes from 41ºN to 27ºN, Global Biogeochem. Cy.,16,3, doi: 10.1029/2001GB001809.

Kim, J., Verma, S.B., and Billesbach, D.P., 1998.Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant-mediated transport, Glob. Change Biol., 5, 433-440.

King, G.M. and Wiebe, W.J., 1978. Methane release from soils of Georgia salt marsh, Geochim.Cosmochim. Acta, 42, 343-348.

Kitidis, V., Tizzard, L., Uher, G., Judd, A., Upstill-Goddered, R.C., Head, I.M., Gray, N.D. Taylor, G., Duran, R., Diez, R., Iglesias, J., and García-Gil, S., 2007. The biogeochemical cycling of methane in Ria de Vigo, NW Spain: sediment processing and sea-air exchange, J. Marine Syst., 66, 258-271.

Kling, G.W., Kipphut, G.W., and .Miller, M.C., 1992. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska, Hydrobiologia, 240, 23-36.

Kock, A.,Gebhardt, S., and Bange, H.W., 2008. Methane emissions from the upwelling area ofMauritania (NW Africa), Biogeosciences, 5, 1119-1125.

Kutzbach, L.,Wagner, D., and Pfeiffer, E.M., 2004.Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena delta, Northern Siberia, Biogeochemistry, 69, 341-362.

Lammers, S. and Suess, E., 1994. An improved head-space analysis method for methane in seawater, Mar. Chem., 47, 115-125.

Lammers, S., Suess, E., Mansurov, M.N., and Anikiev, V.V., 1995. Variations of atmospheric methane supply from the Sea of Okhotsk induced by the seasonal ice cover, Global Biogeochem. Cy., 9, 351-358.

Mattson, M.D. and Likens, G.E., 1993. Redox reactions of organic matter decomposition in a soft water lake, Biogeochemistry, 19, 149-172.

Megonigal, J. P.and Schlesinger, W.H., 2002. Methane-limited methanotrophy in tidal freshwater swamps, Global Biogeochem. Cy., 16, 1088, doi:10.1029/2001GB001594.

Melling, L., Hatano, R., and Goh, K.J., 2005. Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malasia, Soil Biol. Biochem., 37, 1445-1453.

Michmerhuizen, C.M., Striegel, R.G., and McDonald, M.E., 1996.Potential methane emission from north-temperate lakes following ice melt, Limnol. Oceanogr., 41, 985-991.

Mikkelä, C., Sundh, I., Svensson, B.,and Nilsson, M., 1995. Diurnal variation in the methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire, Biogeochemistry, 28, 93-114.

Miyajima, T., Yamada, Y., Wada, E., Nakajima, T., Kotabashi, T., Hanba, Y.T., and Yoshi, K., 1997. Distribution of greenhouse gases, nitrite, and δ13 C of dissolved inorganic carbon in LakeBiwa: Implications for hypolimnetic metabolism, Biogeochemistry, 36, 205-211.

Molongoski, J.J. and Klug, M.J., 1980. Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake, Freshwater Biol.,10, 507-518.

Moore, T.R., Heyes, A.,and Roulet, N.T., 1994. Methane emissions from wetlands, southern Hudson Bay lowland, J. Geophys. Res., 99, 1455-1467.

Nakamura, T., Nojiri, Y., Utsumi, M., Takeshi, Nozawa, and Otsuki, A., 1999. Methane emission to the atmosphere and cycling in a shallow eutrophic lake, Archiv. Für Hydrobiologie, 144, 383-407.

Nakano, T., Kuniyoshi, S., and Fukuda, M., 2000. Temporal variation in methane emission from tundra wetland in a permafrost area, north eastern Siberia, Atmos. Environm., 34, 1205-1213.

Naqvi, S.W.A.,Bange, H.W., Gibb, S.W., Goyet, C., Hatton, A.D.,and Upstill-Goddard, R.C., 2005. Biogeochemical ocean-atmosphere transfer in the Arabian Sea, Prog. Oceanogr., 65, 116-144.

Nykänen, H., Alm, J., Silvola, J., Tolonen, K., and Martikainen, P.J., 1998. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on fluxes rates, Global Biogeochem. Cy., 12, 53-69.

Ojala, A., Käki, T., andHuttunen, J., 2000. Methane emissions from boreal meso-eutrophic lake: an assessment of seasonal and diel variation among emergent vegetation, Verh. Internat. Verein. Limnol., 27, 1420-1423.

Öquist, M. G. and Svensson, B.H., 2002. Vascular plants as regulators of methane emissions from a subarctic mire ecosystem, J. Geophys. Res., 107, D21, 4580, doi: 10.1029/2001JD001030.

Oudot, C., Jean-Baptiste, P., Fourré, E., Marmiche, C., Guevel, M., Ternon, J.-F., and Le Corre, P., 2002.Transatlantic equatorial distribution of nitrous oxide and methane, Deep-sea Res. Pt I, 49, 1175-1193.

Owens, N.J.P., Law, C.S., Mantoura, R.F.C., Burkill, P.H., andLlewellyn, C.A., 1991. Methane flux to the atmosphere from the Arabian Sea, Nature, 354, 293-296.

Phelps, A.R., Peterson, K.M., and Jeffries, M.O., 1998. Methane efflux from high-latitude lakes during ice melt, J. Geophys. Res., 103, 29029-29036.

Pulliam, W.M., 1993. Carbon dioxide and methane exports from a south eastern floodplain swamp, Ecol. Monogr.,63, 29-53.

Purvaja, R. and Ramesh, R., 2001. Natural and anthropogenic methane emission from coastal wetlands of South India, Environm. Managemn., 27, 547-557.

Purvaja, R., Ramesh, R., and Frenzer, P., 2004. Plant-mediated methane emission from an Indian mangrove, Glob. Change Biol., 10, 1825-1834.

Rask, H., Schoenau, J.,and Anderson, D., 2002. Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada, Soil Biol. Biochem., 34, 435-443.

Reeburgh, W.S., Ward, B.B., Whalen, S.C., Sandbeck, K.A., Kilpatrick, K.A., and Kerkhof, L.J., 1991. Black Sea methane geochemistry. DeepSea Research 38, (Suppl. 2), S1189-S1210.

Rehder, G., Keir, R.S., Suess, E., andPohlmann, T., 1998. The multiple sources and patterns of methane in North Sea waters. Aquat. Geochem.,4,403-427.

Rehder, G. and Suess, E., 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures, Mar. Chem. 75, 89-108.

Rejmankova, E., and Post, R.A., 1996. Methane in sulfate-rich and sulfate-poor wetland sediments, Biogeochemistry, 34, 57-70.

Roulet, N.T., Ash, R., Quinton, W., andMoore, T., 1993. Methane flux from drained northern peatlands: effect of a persistent water table lowering on flux, Global Biogeochem. Cy., 7, 749-769.

Roulet, N.T., Crill, P.M. Comer, N.T., Dove, A., and Boubonniere, R.A., 1997. CO2 and CH4 flux between a boreal beaver pond and the atmosphere, J. Geophys. Res., 102, 29313-29319.

Rouse, W.R., Holland, S., andMoore, T.R., 1995. Variability in methane emissions from wetlands at Northern treeline near Churchill, Manitoba, Canada, Arct. Alp. Res., 27, 146-156.

Rudd, J.W.M. and Hamilton, R.D., 1978. Methane cycling in an eutrophic shield lake and its effects on whole lake metabolism, Limnol. Oceanogr., 23,337-348.

Sansone, F.J., Popp, B.N., Gasc, A., Graham, A.W., and Rust, T.M., 2001. Highly elevated methane in the eastern tropical North Pacific and associated isotopically enriched fluxes to the atmosphere, Geophys. Res., 28, 4567-4570.

Schimel, J.P., 1995. Plant transport and methane production as controls on methane flux from arctic wet meadow tundra, Biogeochemistry, 28, 183-200.

Schultz, M., Faber, E., Hollerbach, A., Schröder, H.G., and Güde, H., 2001. The methane cycling in the epilimnion of LakeConstance, Arch. Hydrobiol., 151, 157-176.

Scott, K.J., Kelly, C.A., and Rudd, J.W.M., 1999. The importance of floating peat to methane fluxes from flooded peatlands, Biogeochemistry, 47, 187-202.

Scranton, M.I. and Brewer, P.G., 1977. Occurrence of methane in the near-surface waters of the western subtropical North-Atlantic, Deep-Sea Res., 24, 127-138.

Shakhova, N. and Semiletov, I., 2007. Methane release and coastal environment in the East Siberian Arctic shelf, J. Marine Syst., 66, 227-243.

Shannon, R. D. and White, J.R., 1994. A three-year study of controls on methane emissions from two Michigan peatlands, Biogeochemistry, 27, 35-60.

Smith, L.K. and Lewis, W.M.J., 1992. Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies, Global Biogeochem. Cy., 6, 323-338.

Smith, L. K., Lewis, W.M., Chanton, J.P.,Cronin, G., andHamilton, S.K., 2000.Methane emissions from the OrinocoRiver floodplain, Venezuela, Biogeochemistry, 51, 113-140.

Sotomayor, D., Corredor, J.E., and Morell, J.M., 1994. Methane flux from Mangrove sediments along the south western coast of Puerto Rico, Estuaries, 17, 140-147.

Soumis, N, Ducheimin, E., Canuel, R., and Lucotte, M., 2004.Greenhouse gas emissions from reservoirs of the western United States, Global Biogeochem. Cy., 18, GB3022, doi:10.1029/2003GB002197.

Sugimoto, A. and Fujita, N., 1997. Characteristics of methane emissions from different vegetations on a wetland, Tellus, 49B, 382-392.

Sundh, I., Mikkelä, C., Milsson, M., and Svensson, B., 1995. Potential aerobic methane oxidation in a Sphagnum-dominated peatland-controlling factors and relation to methane emission, Soil. Biol. Biochem., 27, 829-837.

Tavares de Lima, I.B., Victoria, R.L., Novo, E.M.L.M., Feigl, B.J., Ballester, M.V.R., and Ometto, J.P., 2002. Methane, carbon dioxide and nitrous oxide emissions from two Amazonian reservoirs during high water table, Verh. Internat. Verein. Limnol., 28, 438-442.

Tilbrook, B.D. and Karl, D.M., 1994. Dissolved methane distributions, sources, and sinks in the western Bransfield straits, Antarctica, J. Geophy. Res., 99 C8, 16383-16393.

Turetsky, M.R., Wieder, R.K., and Vitt, D., 2002.Boreal peatland C fluxes under varying permafrost regimes, Soil. Biol. Biochem., 34, 907-912.

Utsumi, M., Noijiri, Y., Nakamura, T., Nozawa, T., Otsuki, A., andSeki, H., 1998a. Oxidation of dissolved methane in a eutrophic, shallow lake: Lake Kasumigaura, Japan, Limnol. Oceanogr. ,43, 471-480.

Verma, A., Subramanian, V., and Ramesh, R., 2002. Methane emissions from a coastal lagoon: VembanadLake, West Coast, India, Chemosphere, 47, 883–889.

Waddington, J. M. and Roulet, N.T., 1996. Atmosphere-wetland carbon exchanges: scale dependency of CO2 and CH4 exchange on the development topography of a peatland, Global Biogeochem. Cy., 10, 233-245.

Wang, Z. andHan, X., 2005. Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes, Atmos. Environm., 39, 6295-6305.

Ward, B.B., Kilpatrick, K.A., Novelli, P.C., andScranton, M.I., 1987. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters. Nature 327: 226–229.

Wassmann, R. and Tgein, U.G., 1996.Spatial and seasonal variation of methane emission from an Amazon floodplain lake, Mitt. Internat. Verein. Limnol., 25,179-185.

West, A.E., Brooks, P.D., Fisk, M.C., Smith, L.K., Holland, E.A., Jaeger III, C.H., Babcock, S., Lai, R.S.,and Schmidt, S.K., 1999. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem, Biogeochemistry, 45, 243-264.

Weyhenmeyer, C.E., 1999. Methane emissions from beaver ponds: Rates, patterns, and transport mechanism, Global Biogeochem. Cy., 13, 1079-1090.

Whalen, S.C. and Reeburgh, W.S.,1988. A methane flux time series for tundra environments, Global Biogeochem. Cy., 2, 399-409.

Whiting, G. J. and Chanton, J.P., 1992. Plant-dependent CH4 emission in a subarctic Canadian fen, Global Biogeochem. Cy., 6, 225-231.

Wilson, J.O., Crill, P.M., Bartlett, K.B., Sebacher, D.I., Harris, R.C., and Sass, R.L., 1989. Seasonal variation of methane emissions from a temperate swamp, Biogeochemistry, 8, 55-71.

Xing,Y., Xie, P., Yang, H.,Ni, L., Wang, Y., and Tang, W., 2004. Diel variation of methane fluxes in summer in an eutrophic subtropical lake in China, J. Freshw. Ecol., 19, 639-644.