Supporting information
Advanced Discussion Mechanism based Brain Storm Optimization Algorithm
YutingYang1,2,YuhuiShi3,ShunrenXia†1,2
(1 KeyLaboratoryofBiomedicalEngineeringofMinistryofEducation,ZhejiangUniversity,
Hangzhou310027,China)
(2Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China)
(3Xi’anJiaotong-LiverpoolUniversity,Suzhou215123,China)
; ; †
Testing functions
All the test functions are minimization problems defined as following:
Minfx,x=x1,x2,…,xDT
D is the dimensions.
The formulas and details of benchmark functions used to test our algorithm are presented below. oi is the shifted global optimum, and Fi*is the minimum, and Mi is the rotation matrix defined in the reference (Liang et al. 2013).
f1 Sphere
f1x=i=1Dxi2 (1)
f2 Rotated High Conditioned Elliptic Function
f2x=i=1D106i-1D-1zi2+F1* z=Mx-o1 (2)
f3 Rotated Bent Cigar Function
f3x=z12+106i=2Dzi2+F2* z=Mx-o2 (3)
f4 Rosenbrock's function
f4x=i=1D-1100xi2-xi+12+xi-12 (4)
f5 Griewank's function
f5x=i=1Dxi24000-cosxii+1 (5)
f6 Rastrigin's function
f6x=i=1Dxi2-10cos2πxi+10 (6)
f7 Shifted and Rotated Rosenbrock’s Function
f7x=f4M2.048x-o4100+1+F4* (7)
f8 Shifted and Rotated Weierstrass Function
f8x=f11M0.5x-o6100+F6* (8)
f9 Shifted and Rotated Griewank’s Function
f9x=f5M600x-o7100+F7* (9)
f10 Schwefel's function
f10x=418.9829×D-i=1Dxi'sinxi'12 xi'=xi+4.209687462275036e+002 (10)
f11 Weierstrass function
f11x=i=1Dk=0kmaxakcos2πbkxi+0.5-Dk=0kmaxakcos2πbk∙0.5 (11)
where a = 0.5, b=3, kmax=20.
f12 Shifted Rastrigin’s Function
f12x=f65.12x-o8100+F7* (12)
f13 Shifted and Rotated Rastrigin’s Function
f13x=f6M5.12x-o9100+F9* (13)
f14 Shifted Schwefel’s Function
f14x=f101000x-o10100+F10* (14)
f15 Shifted and Rotated Schwefel’s Function
f15x=f10M1000x-o11100+F11* (15)
f16 Shifted and Rotated HappyCat Function
f16x=i=1Dzi2-D14+0.5i=1Dzi2+i=1DziD+0.5+F13*z=M5x-o13100 (16)
f17 Composition function 1 (CF1) in (Liang et al. 2005): CF1 is composed using ten sphere functions.
f18 Composition function 5 (CF5) in (Liang et al. 2005): CF5 is composed using ten different benchmark functions, whose global optimum is even more difficult than CF1 to locate.
The global fitness values and search ranges, [Xmin, Xmax], are given in Table 1. The initial ranges of each function are set the same as the search ranges.
Table 1 global optimum and search ranges of the test functions
BFs / search range / fitnessf1 sphere function / [-100,100]D / 0
f2 Rotated High Conditioned Elliptic Function / [-100,100]D / 100
f3 Rotated Bent Cigar Function / [-100,100]D / 200
f4Rosenbrock's function / [-2.048, 2.048]D / 0
f5Griewank's function / [-600,600]D / 0
f6Rastrigin's function / [-5.12, -5.12]D / 0
f7 Shifted and Rotated Rosenbrock’s Function / [-100,100]D / 400
f8 Shifted and Rotated Weierstrass Function / [-100,100]D / 600
f9 Shifted and Rotated Griewank’s Function / [-100,100]D / 700
f10Schwefel's function / [-500,500]D / 0
f11Weierstrass function / [-0.5,0.5]D / 0
f12 Shifted Rastrigin’s Function / [-100,100]D / 800
f13 Shifted and Rotated Rastrigin’s Function / [-100,100]D / 900
f14 Shifted Schwefel’s Function / [-100,100]D / 1000
f15 Shifted and Rotated Schwefel’s Function / [-100,100]D / 1100
f16 Shifted and Rotated HappyCat Function / [-100,100]D / 1300
f17 Composition Function 1 (CF1) / [-5,5]D / 0
f18 Composition Function 5 (CF5) / [-5,5]D / 0
Experiment results
Convergence progresses of each algorithm on different benchmark functions for both 10-D and 30-D are shown in the following figures.
f2 f3
f4 f5
f7 f8
f9 f10
f11 f12
f14 f15
f16 f18
Fig. S1Convergence progresses of different algorithms for 10-D problems
f2 f3
f4 f5
f7 f8
f9 f10
f11 f12
f14 f15
f16 f18
Fig. S2 Convergence progresses of different algorithms for 30-D problems
References
Liang J, Qu B, Suganthan P (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory
Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Swarm Intelligence Symposium (SIS), Pasadena, CA, 2005. IEEE, pp 68-75. doi:10.1109/SIS.2005.1501604