AP Calc HW list

Linear, Absolute Value and Quadratic Equations and Inequalities

Section 1 page 7 # 2,3,12,31,33,40-42,44,49,50

Increments and distance, increments and motion

Section 2 page 15 # 17-29 odd, 37-45 odd,49,56a

Functions: even-odd, common graphs of functions, operations on functions

Section 3 page 25 # 2,4,5,6,9,11,12,19-21,29-35 odd,36,40,52,54,55

Transformations, equations and inequalities involving conics, intersections of graphs

Section 4 page 32 # 1,2,4,7-10,17,19,23,33,34,38,55,56,58,75,80

Trigonometric functions

Section 5 page 43 #3,4,7-27 all, 31,38,43,44,47,49,55,58,59,65,66

Rates of Change and Limits

Section 1 page 57 # 1,3,5-7,11,17,19,23-39 odd, 42-44

Limit Theorems

Section 2 page 65 # 3,7,9,13,15,17,21,25-41 odd,43-54 all

Formal Definition of Limit

Section 3 page 74 # 7-16 all, 31,32,61-66

One-sided and Infinite Limits

Section 4 page 83-86 # 1,3,5,6,9,10,11-19 odd, 21-45 odd, 47-48,49

Continuity and the Intermediate Value Theorem

Section 5 Day 1: page 95 # 5-10,13,14,16,18,19,20,21,29,3035,39

Day 2: page 96 # 45-47,49,51,58,59

Tangents to a curve

Section 6 page 101 # 1,2,9,11,12,15,20,22,27,30,35-41 odd

The Derivative of a Function

Section 1 page 117 # 2, 4, 6, 8-11, 13-19 odd, 22-30, 32-34, 39-52, 56

Differentiation Rules with proofs

Section 2 page 129 # 1, 5,7, 11, 13, 15,16,17,20,21, 23, 25,27,29,30,33,38,41-48,50

Average and Instantaneous Rates of Change

Section 3 page 139 # 1,3,4,5,7,8,11,17-21 all, 25,26,28,29

Derivatives of Tr4ig Functions

Section 4 page 152 # 1-20 all,25,31,34,35,37,38,46,49,51,53,55,63-65,71-73

The Chain Rule for Composite Functions

Section 5 page 160 # 9-17 odd, 20,25,27,35,40,43,49,50,53,58,59,66

Implicit Differentiation and Rational Exponents

Section 6 page 170 # 9,13,15,17,19,22,23,25,27,28,29,35,37,43

# 46,47,50,52,56,57,58,63,65-67

Related Rates of Change

Section 7 page 177 # 10 – 24 except 16,20, 27-36 except 33,34

Extreme Values; Max / Min

Section 1 page 195 # 2,3,4,610,11,14,15,22

Rolles’ Theorem; Mean Value Theorem

Section 2 page 203 # 1-4,9,10,11a, 16,18,31,32,41,42,45,46

1st Deriv Test, Increasing & Decreasing Intervals

Section 3 page 208 # 1,3,5,7,11,15,17,21,23,33,37,43,45

2nd Deriv Test, Inflection Points

Section 4 page 217 # 1-29 odd, 33,35,39, 41-61 odd, 63-72

Asymptotes

Section 5 page 230 # 11-37 odd; 39 – 75 odd

Optimization

Section 6 page 242 # 5,7,9,12,14,15,16,25,28,29,38,40-50 all

Linearization, Differentials

Section 7 page 258 # 3,6,13,15,23,33,35,45,47,52a


Anti-derivatives

Chap 4 Sec 1 page 280 # 1- 29 odd, # 31- 57 odd, 69 a-h

Differential Equations w/ initial values

Chap 4 Sec 2 page 288 # 4,5,8,9,13,14,17,23,29, 33,49,50,51,55

Integration using u-substitution

Chap 4 Sec 3 page 296 # 2,3,4,6,7,9,12,13,15,16,21, 25,27,33,34 // 35,37,41,43, 46,53,59

Informal Riemann sums, average value of a function

Chap 4 Sec 4 page 306 # 8,9,11,1213,,16,19,20,23,25

Riemann sums

Chap 4 Sec 5 page 321 # 29-39 odd, 49-59 odd77,78, page 322 # 81-84

Properties of integrals, area, Mean Value Theorem for integrals,

Chap 4 Sec 6 page 330 # 1,5,11,15,19-26 all, 27-39 odd, 40-44 all

Fundamental Theorem of Calculus

Chap 4 Sec 7 page 338 # 3,5,8,12,14,19,25,27,29,31.33,37,40,41,43,45-54,67

Substitution in definite integrals

Chap 4 Sec 8 page 344 # 3 – 24 multiples of 3, 25-31 all

Numerical Integration

Chap 4 Sec 9 page 353 # 3,7,9,11,12,27 trapezoidal rule only

Area between 2 curves

Chap 5 Sec 1 page 371 # 3,4,7,8,9,21,23,25,35,36,50

Volumes of constant cross-section

Chap 5 Sec page 377 # 3-9 odd,

Volumes of revolution by slicing: disks and washers

Chap 5 Sec page 385 # 1-17 odd, 25-39 odd

Volumes of revolution by cylindrical shells

Chap 5 Sec 4 page 392 # 3,5,9,10,13, 21,23,24,27,31,35,37

Arc length

Chap 5 Sec 5 page 398 # 1,3-8, 9-17 odd

Area of a surface of revolution

Chap 5 Sec 6 page 405 # 5-21 odd

Inverse Functions and Their Derivatives

Chap 6 Sec 1 page 456 # 25 – 33 odd, 32

Natural Logarithms

Chap 6 Sec 2 Day 1 page 465 # 7,9,15,19,23,29,35,39,49,51-63 odd

Day 2 #69-76

Exponential Function y = ex

Chap 6 Sec 3 page 472 # 1,3,19,21,232935,36,41,43,47,576473,74,76

ax and logax

Chap 6 Sec 4 page 481 # 11,21,23,33,39,43,45,47,51,63,65,69-75 odd, 76

Exponential Growth and Decay

Chap 6 Sec 5 page 489 # 2-9, 17-20

L’Hopital’s Rule

Chap 6 Sec 6 page 496 # 7,13,15,23,27,30,33,35,37,39,40

Inverse Trig Functions

Chap 6 Sec 8 page 511 # 13,17,21,27,29,35,41-47 odd, 50,51

Derivatives of Inverse Trig Functions

Chap 6 Sec 9 page 518 # 1-6, 17,19,21,23,24,25,29,33,35,73,75

Euler’s Method of Approximation, Slope Fields

Chap 6 Sec 12 page 545 # 1,2,5,8,11-14

Integration by Parts

Chap 7 Sec 2 page 567 # 1,5,7,10,11,13,26,28,31,33,40

Integration by Partial Fractions

Chap 7 Sec 3 page 576 # 9 – 25, 29-33, 49 odd

Integration by Trig Substitution

Chap 7 Sec 4 page 582 # 1-39 odd

Improper Integrals

Chap 7 Sec 6 page 603 # 1-33 odd,


Limits of Sequences, Sequence Notation

Chap 8 Sec 1 page 619 #

Theorems for Calculating Limits of Sequences

Chap 8 Sec 2 page 628 #

Infinite Series

Chap 8 Sec 3 page 638 #

Integral Test for Series of Non-negative Terms

Chap 8 Sec 4 page 643 #

Comparison Test for Series of Non-negative Terms

Chap 8 Sec 5 page 649 #

Ratio and Root Tests for Series of Non-negative Terms

Chap 8 Sec 6 page 654 #

Alternating Series, Absolute and Conditional Convergence

Chap 8 Sec 7 page 661 #

Power Series

Chap 8 Sec 8 page 671 #

Taylor and Maclaurin Series

Chap 8 Sec 9 page 677 #

Convergence of Taylor Series, Error Estimates

Chap 8 Sec 10 page 686 #

Parametric Form

Chap 9 Sec 4 page 741 #

Calculus on Parametrized Curves

Chap 9 Sec 5 page 749 #

Polar Coordinates

Chap 9 Sec 6 page 755 #

Graphing in Polar Coordinates

Chap 9 Sec 7 page 763 #

Integration in Polar Coordinates

Chap 9 Sec 9 page 775 #

Vector-Valued Functions, Derivatives

Chap 11 Sec 1 page 865 #