AP Calc HW list
Linear, Absolute Value and Quadratic Equations and Inequalities
Section 1 page 7 # 2,3,12,31,33,40-42,44,49,50
Increments and distance, increments and motion
Section 2 page 15 # 17-29 odd, 37-45 odd,49,56a
Functions: even-odd, common graphs of functions, operations on functions
Section 3 page 25 # 2,4,5,6,9,11,12,19-21,29-35 odd,36,40,52,54,55
Transformations, equations and inequalities involving conics, intersections of graphs
Section 4 page 32 # 1,2,4,7-10,17,19,23,33,34,38,55,56,58,75,80
Trigonometric functions
Section 5 page 43 #3,4,7-27 all, 31,38,43,44,47,49,55,58,59,65,66
Rates of Change and Limits
Section 1 page 57 # 1,3,5-7,11,17,19,23-39 odd, 42-44
Limit Theorems
Section 2 page 65 # 3,7,9,13,15,17,21,25-41 odd,43-54 all
Formal Definition of Limit
Section 3 page 74 # 7-16 all, 31,32,61-66
One-sided and Infinite Limits
Section 4 page 83-86 # 1,3,5,6,9,10,11-19 odd, 21-45 odd, 47-48,49
Continuity and the Intermediate Value Theorem
Section 5 Day 1: page 95 # 5-10,13,14,16,18,19,20,21,29,3035,39
Day 2: page 96 # 45-47,49,51,58,59
Tangents to a curve
Section 6 page 101 # 1,2,9,11,12,15,20,22,27,30,35-41 odd
The Derivative of a Function
Section 1 page 117 # 2, 4, 6, 8-11, 13-19 odd, 22-30, 32-34, 39-52, 56
Differentiation Rules with proofs
Section 2 page 129 # 1, 5,7, 11, 13, 15,16,17,20,21, 23, 25,27,29,30,33,38,41-48,50
Average and Instantaneous Rates of Change
Section 3 page 139 # 1,3,4,5,7,8,11,17-21 all, 25,26,28,29
Derivatives of Tr4ig Functions
Section 4 page 152 # 1-20 all,25,31,34,35,37,38,46,49,51,53,55,63-65,71-73
The Chain Rule for Composite Functions
Section 5 page 160 # 9-17 odd, 20,25,27,35,40,43,49,50,53,58,59,66
Implicit Differentiation and Rational Exponents
Section 6 page 170 # 9,13,15,17,19,22,23,25,27,28,29,35,37,43
# 46,47,50,52,56,57,58,63,65-67
Related Rates of Change
Section 7 page 177 # 10 – 24 except 16,20, 27-36 except 33,34
Extreme Values; Max / Min
Section 1 page 195 # 2,3,4,610,11,14,15,22
Rolles’ Theorem; Mean Value Theorem
Section 2 page 203 # 1-4,9,10,11a, 16,18,31,32,41,42,45,46
1st Deriv Test, Increasing & Decreasing Intervals
Section 3 page 208 # 1,3,5,7,11,15,17,21,23,33,37,43,45
2nd Deriv Test, Inflection Points
Section 4 page 217 # 1-29 odd, 33,35,39, 41-61 odd, 63-72
Asymptotes
Section 5 page 230 # 11-37 odd; 39 – 75 odd
Optimization
Section 6 page 242 # 5,7,9,12,14,15,16,25,28,29,38,40-50 all
Linearization, Differentials
Section 7 page 258 # 3,6,13,15,23,33,35,45,47,52a
Anti-derivatives
Chap 4 Sec 1 page 280 # 1- 29 odd, # 31- 57 odd, 69 a-h
Differential Equations w/ initial values
Chap 4 Sec 2 page 288 # 4,5,8,9,13,14,17,23,29, 33,49,50,51,55
Integration using u-substitution
Chap 4 Sec 3 page 296 # 2,3,4,6,7,9,12,13,15,16,21, 25,27,33,34 // 35,37,41,43, 46,53,59
Informal Riemann sums, average value of a function
Chap 4 Sec 4 page 306 # 8,9,11,1213,,16,19,20,23,25
Riemann sums
Chap 4 Sec 5 page 321 # 29-39 odd, 49-59 odd77,78, page 322 # 81-84
Properties of integrals, area, Mean Value Theorem for integrals,
Chap 4 Sec 6 page 330 # 1,5,11,15,19-26 all, 27-39 odd, 40-44 all
Fundamental Theorem of Calculus
Chap 4 Sec 7 page 338 # 3,5,8,12,14,19,25,27,29,31.33,37,40,41,43,45-54,67
Substitution in definite integrals
Chap 4 Sec 8 page 344 # 3 – 24 multiples of 3, 25-31 all
Numerical Integration
Chap 4 Sec 9 page 353 # 3,7,9,11,12,27 trapezoidal rule only
Area between 2 curves
Chap 5 Sec 1 page 371 # 3,4,7,8,9,21,23,25,35,36,50
Volumes of constant cross-section
Chap 5 Sec page 377 # 3-9 odd,
Volumes of revolution by slicing: disks and washers
Chap 5 Sec page 385 # 1-17 odd, 25-39 odd
Volumes of revolution by cylindrical shells
Chap 5 Sec 4 page 392 # 3,5,9,10,13, 21,23,24,27,31,35,37
Arc length
Chap 5 Sec 5 page 398 # 1,3-8, 9-17 odd
Area of a surface of revolution
Chap 5 Sec 6 page 405 # 5-21 odd
Inverse Functions and Their Derivatives
Chap 6 Sec 1 page 456 # 25 – 33 odd, 32
Natural Logarithms
Chap 6 Sec 2 Day 1 page 465 # 7,9,15,19,23,29,35,39,49,51-63 odd
Day 2 #69-76
Exponential Function y = ex
Chap 6 Sec 3 page 472 # 1,3,19,21,232935,36,41,43,47,576473,74,76
ax and logax
Chap 6 Sec 4 page 481 # 11,21,23,33,39,43,45,47,51,63,65,69-75 odd, 76
Exponential Growth and Decay
Chap 6 Sec 5 page 489 # 2-9, 17-20
L’Hopital’s Rule
Chap 6 Sec 6 page 496 # 7,13,15,23,27,30,33,35,37,39,40
Inverse Trig Functions
Chap 6 Sec 8 page 511 # 13,17,21,27,29,35,41-47 odd, 50,51
Derivatives of Inverse Trig Functions
Chap 6 Sec 9 page 518 # 1-6, 17,19,21,23,24,25,29,33,35,73,75
Euler’s Method of Approximation, Slope Fields
Chap 6 Sec 12 page 545 # 1,2,5,8,11-14
Integration by Parts
Chap 7 Sec 2 page 567 # 1,5,7,10,11,13,26,28,31,33,40
Integration by Partial Fractions
Chap 7 Sec 3 page 576 # 9 – 25, 29-33, 49 odd
Integration by Trig Substitution
Chap 7 Sec 4 page 582 # 1-39 odd
Improper Integrals
Chap 7 Sec 6 page 603 # 1-33 odd,
Limits of Sequences, Sequence Notation
Chap 8 Sec 1 page 619 #
Theorems for Calculating Limits of Sequences
Chap 8 Sec 2 page 628 #
Infinite Series
Chap 8 Sec 3 page 638 #
Integral Test for Series of Non-negative Terms
Chap 8 Sec 4 page 643 #
Comparison Test for Series of Non-negative Terms
Chap 8 Sec 5 page 649 #
Ratio and Root Tests for Series of Non-negative Terms
Chap 8 Sec 6 page 654 #
Alternating Series, Absolute and Conditional Convergence
Chap 8 Sec 7 page 661 #
Power Series
Chap 8 Sec 8 page 671 #
Taylor and Maclaurin Series
Chap 8 Sec 9 page 677 #
Convergence of Taylor Series, Error Estimates
Chap 8 Sec 10 page 686 #
Parametric Form
Chap 9 Sec 4 page 741 #
Calculus on Parametrized Curves
Chap 9 Sec 5 page 749 #
Polar Coordinates
Chap 9 Sec 6 page 755 #
Graphing in Polar Coordinates
Chap 9 Sec 7 page 763 #
Integration in Polar Coordinates
Chap 9 Sec 9 page 775 #
Vector-Valued Functions, Derivatives
Chap 11 Sec 1 page 865 #