Supplementary information:

Figure S1: Rarefaction curves indicating the observed number of operational taxonomic units (OTUs), at a genetic distance of 3% in different chironomid egg mass and larva samples.

Figure S2: UPGMA clustering of bacterial communities from chironomid egg masses and larvae. Significant differences were found between the bacterial communities associated with the egg masses and the larvae (AMOVA: F1,9 =4.3, P0.001).

Figure S3. Phylogenetic tree representing heavy metal resistant bacterial isolates from chironomid egg masses and larvae. The isolates accession numbers are indicated in parentheses after the isolates names. The sequence alignments were performed using the CLUSTAL W program and the trees were generated using the neighbor-joining method with Kimura 2 parameter distances in MEGA 4.1 software. Bootstrap values (from 1000 replicates) greater than 50% are shown at the branch points. The bar indicates a 2% sequence divergence.

Table S1: Bacterial abundances at the genus level, in chironomid egg masses and larvae. The table presents OTUs that were identified at the genus level, whose prevalence in the sequence reads were less than 1% (on average) in the egg masses and / or larvae. About 40% and 25% of all the genera that were identified from the egg mass and larval bacterial communities, respectively, may potentially have detoxifying abilities (only one reference per genus is specified). See also Table 1 for identified genera with abundances of more than 1%.

Class/Genus / Mean abundance % (prevalence) / Known detoxifying activity / Reference
Egg masses / Larvae
Alphaproteobacteria
Phenylobacterium / 0.9 (6/6) / 0.7 (3/5) / Aminopyrine degradation / Blecher et al., 1981
Paracoccus / 0.5 (6/6) / 0.1 (4/5) / Chlorpyrifos and trichloro- pyridinoldegradation / Xu et al. 2008
Brevundimonas / 0.4 (6/6) / 0.08 (3/5) / Connected tobiostimulation of a heavily PAH-contaminated soil / Vinas et al., 2005b
Devosia / 0.3 (6/6) / 0.05 (2/5) / Decontamination of hexachlorocyclohexane / Verma et al., 2009
Rhodobacter / 0.2 (6/6) / 0.1 (3/5) / Cadmium bioremediation / Bai et al., 2008
Hyphomonas / 0.1 (4/6) / 0.003 (1/5) / Heavy metalsbioremediation / Pal et al., 2008
Betaproteobacteria
Thauera / 0.8 (6/6) / 0.2 (3/5) / Toluene degradation / Shinoda et al., 2004
Propionivibrio / 0.6 (6/6) / 0.2 (3/5) / Perchlorate reduction / Thrash et al., 2010
Zoogloea / 0.3 (6/6) / 0.1 (3/5) / Phenanthrene and pyrene degradation / Li et al., 2005a
Uruburuella / 0.3 (5/6) / 0.01 (1/5) / none
Azonexus / 0.2 (6/6) / 0.05 (2/5) / Denitrifying bacteria from sludge wastewater treatment plant / Quan et al., 2006
Simplicispira / 0.1 (4/6) / 0.01 (2/5) / Denitrifying bacteria / Wen et al., 1999
Burkholderia / 0.1 (3/6) / 0.03 (1/5) / Xenobiotic pollutants degradation / O’Sullivan and Mahenth- iralingam,
2005
Naxibacter / 0.1 (3/6) / - / Arsenic-resistant / Huang, 2010
Massilia / 0.02 (2/6) / 0.1 (2/5) / Phenanthrene degradation / Loick et al., 2011
Laribacter / 0.02 (4/6) / 0.1 (2/5) / -
Gammaproteobacteria
Rheinheimera / 0.6 (6/6) / 0.1 (3/5) / -
Tolumonas / 0.5 (6/6) / 0.1 (3/5) / Identified from a microbial consortium capable of U(VI) reduction / Akob et al., 2008
Moraxella / 0.3 (6/6) / - / Mineralization of p-nitrophenol / Errampalli et al., 1999
Steroidobacter / 0.3 (4/6) / - / Polycyclic aromatic degradation / Cebron et al., 2011
Thermomonas / 0.1 (6/6) / 0.08 (2/5) / Associated with petroleum land treatment unit / Kaplan et al., 2003
Shewanella / 0.03 (3/6) / 0.2 (3/5) / Chromium (VI) reduction / Guha et al., 2001
Deltaproteobacteria
Desulfobulbus / 0.4 (6/6) / 0.1 (4/5) / Isolated during Uranium polluted soil bioremediation / Groudev et al., 2008
Bdellovibrio / 0.3 (6/6) / 0.03 (1/5) / -
Desulfopila / 0.02 (3/6) / 0.1 (4/5) / -
Actinobacteria
Bifidobacterium / 0.5 (6/6) / 0.3 (4/5) / -
Brevibacterium / 0.1 (1/6) / 0.09 (2/5) / Zinc absorption / Taniguchi et al., 2000
Leucobacter / 0.1 (6/6) / 0.2 (3/5) / Cr (VI) reduction / Sarangi et al., 2007
Mycobacterium / 0.1 (6/6) / 0.2 (5/5) / Degradation of straight-chain aliphatic and high-molecular weight
polycyclic aromatic hydrocarbons / Bogan et al., 2003
Agrococcus / 0.1 (3/6) / 0.01 (2/5) / -
Corynebacterium / 0.04 (3/6) / 0.1 (3/5) / Bioremediation of arsenic / Mateos et al., 2006
Gordonia / 0.003 (1/6) / 0.1 (2/5) / Degradation of car engine base oil / Koma et al., 2003
Nocardioides / 0.005 (1/6) / 0.7 (2/5) / Dechlorination and mineralization of atrazine / Topp et al., 2000
Micrococcus / - / 0.2 (3/5) / Bioremediation of contaminated surface water / Li et al., 2005b
Bacteroidia
Dysgonomonas / 0.1 (6/6) / 0.8 (5/5) / -
Paludibacter / 0.1 (5/6) / - / Bacterial consortium, growth on toluene / Muller et al., 2009
Flavobacteria
Fluviicola / 0.3 (6/6) / 0.006 (1/5) / -
Fusobacteria
Sebaldella / 0.3 (6/6) / 0.04 (2/5) / -
Sphingobacteria
Haliscomenobacter / 0.2 (6/6) / 0.05 (3/5) / Associated with wastewater treatment systems / Miller et al., 2007
Caldilineae
Caldilinea / 0.05 (4/6) / 1.9 (3/5) / Bioremediation of oil waste / Maciel et al., 2009
Bacilli
Bacillus / 0.3 (5/6) / 0.1 (3/5) / Cr (VI) reduction / Liu et al., 2006
Streptococcus / 0.1 (5/6) / 0.08 (2/5) / -
Clostridia
Anaerovorax / 0.4 (6/6) / 0.2 (4/5) / Dechlorinating mixed culture / Rowe et al., 2008
Subdoligranulum / 0.4 (6/6) / 3.3 (5/5) / -
Acetobacterium / 0.1 (6/6) / 0.005 (1/5) / Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) / Sherburne et al., 2005
Aminomonas / 0.1 (5/6) / 0.01 (2/5) / Identified in polycyclic aromatic hydrocarbon degrading microbial consortium / Vinas et al., 2005a
Faecalibacterium / 0.1 (6/6) / 0.008 (1/5) / -
Clostridium / 0.08 (5/6) / 0.1 (5/5) / Nitroaromatic contaminants bioremediation / Sembries and Crawford, 1997
Erysipelotrichia
Erysipelothrix / 0.3 (6/6) / 0.02 (1/5) / Identified in a common effluent treatment plant / Kapley et al., 2007
Bulleidia / 0.01 (1/6) / 0.2 (4/5) / -
Gemmatimonadetes
Gemmatimonas / 0.1 (5/6) / - / -
Verrucomicrobiae
Haloferula / 0.1 (3/6) / - / -
Luteolibacter / 0.02 (3/6) / 0.1 (2/5) / Favored development in PAH-contaminated soil / Cebron et al., 2009

References (for supplementary Table S1)

Akob DM, Mills HJ, Gihring TM, Kerkhof L, Stucki JW, Anastacio AS et al. (2008). Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments. Appl Environ Microbiol 74: 3159–3170.

Bai H, Zhang ZM, Yang GE, Li BZ. (2008). Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresour Technol 99: 7716–7722.

Blecher H, Blecher R, Wegst W, Eberspaecher J, Lingens F. (1981). Bacterial degradation of aminopyrine. Xenobiotica 11: 749–754.

Bogan BW, Lahner LM, Sullivan WR, Paterek JR. (2003). Degradation of straight-chain aliphatic and high-molecular-weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. J Appl Microbiol 94: 230–239.

Cebron A, Beguiristain T, Faure P, Norini MP, Masfaraud J-F, Leyval C. (2009). Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl Environ Microbiol 75: 6322–6330.

Cebron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell C et al. (2011). Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13: 722–736.

Errampalli D, Tresse O, Lee H, Trevors JT. (1999). Bacterial survival and mineralization of p-nitrophenol in soil by green fluorescent protein-marked Moraxella sp. G21 encapsulated cells. FEMS Microbiol Ecol 30: 229–236.

Groudev S, Spasova I, Nicolova M, Georgiev P. (2007). Acid mine drainage cleanup in a uranium deposit by means of a passive treatment system. Physicochem. Probl Miner Process 41: 265–274.

Guha H, Jayachandran K, Maurrasse F (2001). Kinetics of chromium. (VI) reduction by a type strain Shewanella alga under different growth conditions. Environ Pollut 115: 209–218.

Huang A,Teplitski M,Rathinasabapathi B,Ma L. (2010). Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata. Can J Microbiol 56: 236–246.

Kaplan CW, Kitts CL. (2004.) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70: 1777–1786.

Kapley A, Baere TD, Purohit HJ. (2007). Eubacterial diversity of activated biomass from a common effluent treatment plant. Res Microbiol 158: 494–500.

Koma D,Sakashita Y,Kubota K,Fufi Y, Hasumi F,Chung SY, et al. (2003). Degradation of car engine base oil byRhodococcussp. NDKK48 and Gordoniasp. NDKY76A. Biosci Biotechnol Biochem 67: 1590–1593.

Li H, Li T, Hua T, Zhang Y, Xiong X, Gong Z. (2005). Bioremediation of contaminated surface water by immobilizedMicrococcus roseus. Environ Technol 26: 931–939.

Li P, Wang X, Stagnitti F, Li L, Gong Z, Zhang H, Xiong X, Austin C. (2005). Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria Zoogloea sp. Environ Eng Sci 22: 390–399.

Liu YG, Xu WH, Zeng GM, Li X, Gao H. (2006). Cr (VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41: 1981–1986.

Loick N, Hobbs PJ, Hale MDC, Jones DL. (2009). Bioremediation of poly-aromatic hydrocarbon (PAH)-contaminated soil by composting. Crit Rev Environ Sci Technol 39: 271–332.

Maciel BM, Santos ACF, Dias JCT, Vidal RO,Dias RJC,Gross E, et al. (2009). Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste. Gen Mol Res 8: 375–388.

Mateos LM, Ordóñez E, Letek M. Gil JA. (2006). Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic . Int Microbiol 9: 207-215.

Miller TR, Franklin M P, Halden RU. (2007). Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation. FEMS Microbiol Ecol 60: 299–311.

Muller S, Vogt C, Laube1 M, Harms H, Kleinsteuber S. (2009). Community dynamics within a bacterial consortium during growth on toluene under sulfate-reducing conditions. FEMS Microbiol Ecol 70: 586–596.

O'Sullivan LA, Mahenthiralingam E. (2005). Biotechnological potential within the genus Burkholderia. Lett Appl Microbiol 41: 8–11.

Pal A,Paul AK. (2008). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48: 49–64.

Quan Z-X, Im W-T, Lee S-T. (2006). Azonexus caeni sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant. Int J Syst Evol Microbiol 56: 1043–1046.

Rowe AR, Lazar BJ, Morris RM, Richardson RE. (2008). Characterization of the community structure of a dechlorinating mixed culture and comparisons of gene expression in planktonic and biofloc-associated “Dehalococcoides” and Methanospirillum species. Appl Environ Microbiol 74: 6709–6719.

Sarangi A, Krishnan C. (2008). Comparison of in vitro Cr (VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Biores Technol 99: 4130–4137.

Sembries S, Crawford RL. (1997). Production of Clostridium bifermentans spores as inoculum for bioremediation of nitroaromatic contaminants. Appl Environ Microbiol 63: 2100–2104.

Sherburne LA, Shrout JD, Alvarez, PJJ. (2005). Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation 16: 539–547.

Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y, Hiraishi A, Yukawa H et al. (2004). Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. Strain DNT-1. Appl Environ Microbiol 70: 1385–1392.

TaniguchiJ, Hemmi H, Tanahashi K, Amano N, Nakayama T, Nishino T. (2000). Zinc biosorption by a zinc-resistant acterium,Brevibacteriumsp. strain HZM-1. Appl Microbiol Biotechnol 54: 581–588.

Thrash JC, Pollock J, Torok T, Coates JD. (2010). Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov. and Propionivibrio militaris, sp. nov. Appl Microbiol Biotechnol 86: 335–343.

Topp E, Mulbry WM, Zhu H, Nour SM, Cuppels N. (2000). Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl Environ Microbiol 66: 3134–3141.

Verma M, Kumar M, Dadhwal M, Kaur J, Lal R. (2009). Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 59: 795–799.

Vinas M, Sabate J, Espuny JM, Solanas AM. (2005a). Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71: 7008–7015.

Vinas M, Sabaté J, Guasp C, Lalucat J, Solanas AM. (2005b). Culture-dependent and -independent approaches establish the complexity of a PAH-degrading microbial consortium. Can J Microbiol 51: 897–909.

Wen A, Fegan M, Hayward C, Chakraborty S, Sly L. (1999). Phylogenetic relationships among members of the Comamonadaceae, and description of Derftia acidovorans (den Dooren de Jong 1926 and Tarnaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49: 567–576.

Xu G, Zhengc W, Lic Y, Wangd S, Zhangc J, Yan Y. (2008). Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeterior Biodegrad 62: 51–56.

9