REFERENCES

1.Abdu-Raddad, L. J., Patnaik, P., and Kublin, J.G. (2006), Dual infection with HIV and Malaria fuels the spread of both diseases in Sub-Saharan Africa, Science, 314, 1603-1606.

2.Alexander, M. E., Bowman, Moghadas, S. M., Summers, R., Gumel, A. B. and Sahai, B. M. (2004),A vaccination Model for Transmission Dynamics of Influenza, SIAM Journal on Applied Dynamical Systems., 3, 503-524.

3.Anderson, R.M. and May, R.M. (1991), Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford UK.

4.Aparicio, Juan P. and Hernandez, Julio C.(2006),Preventive Treatment of Tuberculosis Through Contact Tracing, Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges,Contemporary Mathematics, 410, 17-29.

5.Aron, J.L. and May, R.M. (1982), The population Dynamics of Malaria, The Population Dynamics of Infectious Diseases: Theory and Applications, R.M. Anderson, ed.,Chapman and Hall, London, 139-179.

6.Banerjee, S., Sarkar, R.R. (2008), Delay-induced Model for Tumor–Immune Interaction and Control of Malignant Tumor Growth, Bio systems, 91, 268–288.

7.Blanchard, P. Devaney, R. L. and Hall, G. R. (2006),Differential Equations, London: Thompson, 96–111.

8.Boer, R.D., Hogeweg, P. (1986), Interactions Between Macrophages and T-Lymphocytes: Tumor Sneaking Through Intrinsic to Helper T Cell Dynamics, Journal of Theoretical Biology, 120, 331–351.

9.Boer, R.D., Hogeweg, P., Dullens, H., Weger, R.D., Otter, W.D. (1985), Macrophage T-Lymphocyte Interactions in the Anti-Tumor Immune Response: A Mathematical Model, Journal of Immunology, 134, 2748–2758.

10.Brauer F., Castillo-Chavez C.(2001), Mathematical Models in Population Biology and Epidemiology, Springer Verlag.

11.Bruce-Chwatt, L.J. (1968),Movements of Populations in Relation to Communicable Disease in Africa,East African Medical Journal, 45, 266-275.

12.Byrne, H., Cox, S., Kelly, C. (2004), Macrophage-Tumor Interactions: In Vivo Dynamics,Discrete Continuous Dynamical Systems - Series B,4, 81-98.

13.Butler, G., Freedman, H. I., Waltman, P., (1986), Uniformly Persistent System, Proceedings of American Mathematical Society, 96, 425 – 429.

14.Capasso, V., Serio G. (1978),A Generalization of the Kermack–Mckendrick Deterministic Epidemic Model, Mathematical Biosciences, 42, 43–61.

15.Chilundo, B., Sundby J. and Aanestad, M. (2004), Analyzing the Quality of Routine Malaria Data in Mozambique, Malaria Journal, 3, 1-11.

16.Chinviriyasit S. and Chinviriyasit, W. (2007), Global Stability of an Epidemic Model,Kasetsart Journal (Natural Science), 41, 225 – 228.

17.Chitnis, N., Cushing, J.M. and Hyman, J.M. (2006), Bifurcation Analysis of a Mathematical Model for Malaria Transmission, Siam Journal of Applied Mathematics, 67, 24-45.

18.Ciupe, S. M., Ribeiro, R. M., Nelson, P. W. and Perelson, A. S. (2007), Modeling the Mechanisms of Acute Hepatitis B Virus Infection, Journal of Theoretical Biology, 247, 23–35.

19.Derouich, M. and Boutayeb, A. (2008), An Avian Influenza Mathematical Model, Applied Mathematical Sciences, 2, 1749-1760.

20.Diekmann, O, Heesterbeek, J., Metz, J. (1990), On the Definition and the Computation of the Basic Reproductive Ratio in Models of Infectious Diseases in Heterogeneous Populations,Journal of Mathematical Biology, 28, 356-382.

21.Dietz, K. (1988), Mathematical Models for Transmission and Control of Malaria, In: W. Wernsdorfer and I. McGregor (Eds.), Principles and Practice of Malariology, Churchill Livingstone, Edinburgh, 1091-1133.

22.Dingli, D., Cascino, M., Josic, K. Russell, S. and Bajzer, Z.(2006),Mathematical Modeling of Cancer Radiovirotherapy, Mathematical Biosciences, 199, 55-78.

23.Driessche, P. Van Den, Watmough, J. (2002),Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission,Mathematical Biosciences, 180, 29-48.

24.Eikenberry, S., Hews, S., Nagy, J.D., Kuang, Y. (2009), The Dynamics of a Delay Model of Hepatitis B Virus Infection with Logistic Hepatocyte Growth, Mathematical Biosciences and Engineering, 6, 283–299.

25.El-Gohary A., Al-Ruzaiza A.(2007), Chaos and adaptive control in two prey, one predator system with nonlinear feedback, Chaos, Solitons & Fractals, 34, 443–453.

26.Emerson, H. (1922),The Influence of Epidemiology on Present Day Methods of Control of Communicable Disease, read before the Vital Statistics Section of the American Public Health Association at the Fifty-first Annual Meeting, Cleveland.

27.Eykhoff, P. (1974), System Identification: Parameter and State Estimation, Chichester, England.

28.Ferguson, N. M., Fraser, C., Donnelly, C. A., Ghani, A. C. and Anderson, R. M. (2004), Public Health Risk from the Avian H5N1 Influenza Epidemic, Science, 304, 968-969.

29.Freedman, A., Tao, Y. (2003), Analysis of a Model of a Virus that Replicates Selectively in Tumor Cells. Journal of Mathematical Biology, 47, 391-423.

30.Freedman H.I., Rai, B. (1995), Can Mutualism Alter Competitive Outcome? A Mathematical Analysis, Rocky Mountain Journal of Mathematics, 25, 217-229.

31.Freedman, H.I., Rai, B. (1987), Persistence in a predator-prey-competitor-mutualist model.In: Proceedings of this Eleventh International Conference on Nonlinear Oscillations.(Eds.: M. Farkas, V. Kertesz and G. Stepan). Janos Bolyai Math. Soc., Budapest,73–79.

32.Ghosh, M., Chandra, P., Sinha, P., Shukla, J. B. (2004), Modeling the Spread of Carrier Dependent Infectious Diseases with Environmental Effect, Applied Mathematics and Computations, 152, 385-402.

33.Ghosh, M., Chandra, P., Sinha, P., Shukla, J. B. (2005), Modeling the Spread of Bacterial Disease with Environmental Effect in a Logistically Growing Human Population, Nonlinear Analysis: Real World Applications,7, 341-363.

34.Golding, J. (1992), Oxford Textbook of Public Health, 2nd Edn. Volume 1: Influences of Public Health.

35.Gourley, S. A., Kuang, Y. and Nagy, J. D. (2008), Dynamics of a Delay Differential Equation Model of Hepatitis B Virus Infection, Journal of Biological Dynamics, 2, 140–153.

36.Hahn, W., Weinberg, R. (2002), Modelling the Molecular Circuitry of Cancer, Nature Reviews Cancer, 2, 231–241.

37.Hale, J.K., (1980),Ordinary differential equations, 2nd Ed., Kriegor, Basel.

38.Hale, J., Lunel, S.V. (1993), Introduction to Functional Differential Equations. Springer-Verlag, New York.

39.Hannahan, D., Weinberg, R. (2000), The hallmarks of cancer Cell, 100, 57–70.

40.Hassel, M.P. (1981), Arthropod Predator Prey system, Theoretical Ecology: Principals and Applications,2nd edn (ed. R. M. May), Oxford UK, Blackwell Science, 105-131.

41.Hethcote, H. W. (2000), The Mathematics of Infectious Diseases,SIAM Review,42, 599–653.

42.Hethcote, H.W., Zhien, M., Shengbing, L. (2002), Effects of Quarantine in Six Endemic Models for Infectious Diseases, Mathematical Biosciences, 180, 141-160.

43.Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M. (1995), Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection, Nature,373, 117-122.

44.Huang, G., Ma, W., Dietz, Y. (2011),Global Analysis for Delay Virus Dynamics Model with Beddington-DeAngelis Functional Response, Applied Mathematics Letters, 24,1199-1203.

45.Huang, G., Ma, W. and Takeuchi Y. (2011), Global Analysis for Delay Virus Dynamics Model with Beddington-DeAngelis Functional Response,Applied Mathematics Letters, 24, 1199–1203.

46.Iwami, S., Takeuchi, Y., Liu, X. N. (2007), Avian-Human Influenza Epidemic Model, Mathematical Biosciences, 207, pp. 1-25.

47.Kasuya, H., Takeda, S., Nomoto, S., and Nakao, A. (2005), The potential of Oncolytic Virus Therapy for Pancreatic Cancer, Cancer Gene Therapy,12, 725-736.

48.Kermack, W. O. and A. G. McKendrick (1932), Contributions to the mathematical theory of epidemics-II. The problem of endemicity, Proceedings of the Royal Society 138A, 55-83. (reprinted in Bulletin of Mathematical Biology 53, 57-87, 1991)

49.Kim, K. Ik and Lin, Z. (2010), Avian-Human Influenza Epidemic Model with Diffusion Nonlinear analysis: Real World Applications,11, 313-322.

50.Kirn, D. H. and McCormick, F. (1996), Replicating Viruses as Selective Cancer Therapeutics, Mol. Med. Today, 2, 519-527.

51.Kirschner, D., Panetta, J. (1998), Modelling Immunotherapy of the Tumor–Immune Interaction, Journal of Mathematical Biology, 37, 235–252.

52.Koella, J.C. (1991), On the Use of Mathematical Models of Malaria Transmission, Acta Tropica, 49, 1-25.

53.Kolev, M. (2003), Mathematical Modeling of the Competition Between Tumors and Immune system Considering the Role of the Antibodies,Mathematical and Computer Modeling,37, pp.1143–1152.

54.Kuang, Y. (2004), Biological Stoichiometry of Tumor Dynamics: Mathematical Models and Analysis, Discrete and Continuous Dynamical Systems - Series B, 4, 221-240.

55.Kuznetsov, V. and Taylor, M. (1994), Nonlinear Dynamics of Immunogenic Tumors: Parameter Estimation and Global Bifurcation Analysis, Bulletin of Mathematical Biology, 56, 295–321.

56.Li, J., Welch, R.M., Nair, U.S., Sever, T.L., Erwin, D.E., Cordon-Rosales, C. and Padilla, N. (2002), Dynamic Malaria Models with Environmental Changes, in proceedings of the Thirty-Fourth Southeastern Symposium on System Theory, Huntsville, 396-400.

57.Liu, W.M., Hethcote, H.W., Levin, S.A.(1987), Dynamical Behaviour of Epidemiological Models with Nonlinear Incidence Rates, Journal of Mathematical Biology, 25, 359-380.

58.Liu, W.M., Levin, S.A., Iwasa, Y. (1986), Influence of Nonlinear Incidence Rates upon the Behaviour of SIRS Epidemiological Models, Journal of Mathematical Biology, 23, 187-204.

59.López-vélez, R., Huerga, H., Turrientes, M.C. (2003), Infectious Diseases in Immigrants from the Perspective of a Tropical Medicine Referral Unit, TheAmerican journaloftropical medicineandhygiene, 69, 115–121.

60.Lundberg, A., Weinberg, R. (1999), Control of Cell Cycle and Apoptosis, European Journal of Cancer, 35, 1886–1894.

61.Lyapunov, A. M. (1892), The General Problem of the Stability of Motion (in Russian). Kharkov Mathematical Society (250 pp.), Collected Works II.

62.MacDonald, G. (1957), The Epidemiology and Control of Malaria, Oxford University Press, London.

63.Martens, P. and Hall, L. (2000), Malaria on the Move: Human Population Movement and Malaria Transmission, Emerging Infectious Diseases, 6,103–109.

64.McCormick, F. (2003), Cancer Specific Viruses and the Development of ONYX-015, Cancer Biology and Therapy, 2, 157-160.

65.Min, L., Su Y. and Kuang, Y. (2008), Mathematical Analysis of a Basic Virus Infection Model with Application to HBV Infection, Rocky Mountain Journal of Mathematics, 38, 2008, 1–13.

66.Moghadas, S. M., Gumel, A. B. (2002), Global Stability of a Two-Stage Epidemic Model with Generalized Non-Linear Incidence, Mathematics and Computers and Simulation, 60, 107–118.

67.Nani, F., Freedman H.I. (2000), A Mathematical Model of Cancer Treatment by Immunotherapy, Mathematical Biosciences, 163, 159-199.

68.Naresh, R., Pandey, S. and Misra, A. K. (2008), Analysis of a Vaccination Model for Carrier Dependent Infectious Diseases with Environmental effects, Nonlinear Analysis: Modelling and Control, 13, 331-350.

69.Nedelman, J. (1985), Introductory Review: Some New Thoughts About Some Old Malaria Models, Mathematical Biosciences,73,159-182.

70.Nowak, M. A., Bonheoffer, S., Hill, A. M. Boehme, R., Thomas, H. C. and McDade, H. (1996), Viral dynamics in hepatitis B virus infection, Proceedings of Natural Acad. Sci. USA, 93, 4398–4402.

71.Nowak, M.A., May, R.M. (2000), Virus Dynamics: Mathematical Principles of Immunology and Virology, New York, Oxford.

72.Novozhilov, Artem S., Berezovskaya, Faina S., Koonin, Eugene V. and Karev ,Georgy P. (2006), Mathematical Modeling of Tumor Therapy with Oncolytic Viruses: Regimes with Complete Tumor Elimination within the Framework of Deterministic Models,Biology Direct, 1, 1-6.

73.Nowak, M.A., Bhangham, C.R. (1996), Population dynamics of immune responses to persistent viruses, Science, 272, 74-79.

74.Preziosi, L. (2003), Modeling Cancer Growth, CRC-Press, Chapman Hall, Boca Raton.

75.Prothero, R.M. (1977),Disease and Mobility: A Neglected Factor in Epidemiology, International Journal of Epidemiology, 6, 259-267.

76.Ross, R. (1911), The prevention of malaria, John Murray, London.

77.Ross R. (1928), Studies on Malaria, London.

78.Rutherford, G. and Woo, J. (1988), Contact Tracing and the Control of Human Immunodeficiency Virus, Journal of American Medical Association, 259, 3609-3610.

79.Sarkar, R., Banerjee, S. (2005), Cancer Self Remission and Tumor Stability - a Stochastic Approach, Mathematical Biosciences, 196, 65–81.

80.Singh, K., Wester, W.C., Gordon, M. and Trenholme, G.M. (2003), Problems in the Therapy for Imported Malaria in the United States, Archives of Internal Medicine,17, 2027–2030.

81.Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y. and Hay, S.I. (2005), The Global Distribution of Clinical Episodes of Plasmodium Falciparum Malaria, Nature, 434, 214-217.

82.Singh, S., Shukla, J. B., and Chandra, P. (2005), Modelling and Analysis of the Spread of Malaria: Environmental and Ecological Effects, Journal of Biological Systems, 13,1-11.

83.Tao, Y., and Guo, Q. (2005),The competitive Dynamics between Tumor Cells, a Replication-Competent Virus and an Immune Response, Mathematical Biology, 51,37-74.

84.Times of India (28 August, 2011), Malaria on rise, 68 cases in seven months.

85.Usman, A., Cunningham, C., Jackson, T.(2005), Application of the Mathematical Model of Tumor-Immune Interactions for IL-2 Adoptive Immunotherapy to Studies on Patients with Metastatic Melanoma or Renal Cell Cancer,Undergraduate Math Journal, 6, 1-23.

86.Vandermeer, J.H., Goldberg, D.E. (2003), Population Ecology: First Principles, Princeton University Press, New Jersey.

87.Van den Driessche, P., Watmough, J. (2002),Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Mathematical Biosciences,180,29-48.

88.Villasana, M. and Radunskaya, A. (2003), A Delay Differential Equation Model for Tumor Growth, Journal of Mathematical Biology, 47, 270–294.

89.Wei, W., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., and Shaw, M. (1995), Viral Dynamics in Human Immunodeficiency Virus Type 1 Infection, Nature, 373,117-122.

90.Wein, L.M., Wu, J.T., and Kirn, D.H. (2003), Validation and Analysis of a Mathematical Model of a Replication-Competent Oncolytic Virus for Cancer Treatment: Implications for Virus Design and Delivery, Cancer Research, 63, 1317–1324.

91.Wikipedia, (2008),

92.Wilson, M.E. (1998), Infectious diseases: An ecological perspective, British Medical Journal, 311, 1681–1684.

93.Wodarz, D. (2003), Gene Therapy for Killing p53-Negative Cancer Cells: Use of Replicating Versus Nonreplicating Agents, Human gene therapy, 14,153-159.

94.Wodarz D., Komarova, N. (2005), Computational Biology of Cancer: Lecture notes and Mathematical Modeling, Singapore, World Scientific Publishing Company.

95.Wodarz, D. (2001), Viruses as Antitumor Weapons: Defining Conditions for Tumor Remission, Cancer Research, 61, 3501-3507.

96.Wu, J.T., Byrne, H.M., Kirn, D.H., Wein, L.M. (2001), Modeling and analysis of a virus that replicates selectively in tumor cells, Bulletin of Mathematical Biology, 63, 731-768.

97.Wu, J.T., Kirn, D.H., and Wein, L.M. (2004),Analysis of a Three-Way Race Between Tumor Growth, a Replication-Competent Virus and an Immune Response, Bulletin of Mathematical Biology,66,605–625.

98.Yafia, R. (2006)a, Hopf bifurcation in a Delayed Model for Tumor–Immune System Competition with Negative Immune Response, Discrete Dynamical Nature Society,2006, 1-9.

99.Yafia, R. (2006) b, Stability of Limit Cycle in a Delayed Model for Tumor–Immune System Competition with Negative Immune Response, Discrete Dynamical Nature Society, 2006,1-13.

1