Part 15.Surface phenomena. Adsorption 1
PART15
SURFACEPHENOMENA.ADSORPTION
1.GENERALUNDERSTANDINGSABOUTSORPTIONPROCESSES.
1.1.ABSORPTION,ADSORPTION,HAEMOSORPTION(DEFINITIONS).
Sorptionprocessesincludealltheprocesses,inwhichonesubstanceisboundtothesurfaceorinthevolumeofanothersubstance.
Sorptionprocessesareclassifiedasfollows:
1.Absorptionisaprocessinwhichonesubstancebindsanotherinitsvolume.
Forinstance,whengaseousNH3isbubbledthroughwater,itisabsorbedanddistributedevenlyinthewholevolumeofwater.
2.Adsorptionisaprocess,inwhichonesubstancebecomesboundtothesurfaceofanother.
Forinstance,adsorbsaceticacidformitswatersolutionandthemoleculesofaceticacidareattachedtothesurfaceofcoalparticles.
3.Haemosorptionisasorptionprocess,inwhichonesubstancebindsanotherbymeansofchemicalinteraction.
Inthiscaseitisdifficulttoclassifybetweenabsorptionandadsorption,becausetheprocessesofchemicalsorptionusuallybeginonthesurfaceandthencontinueinthevolume.
Inthefurthertextletusunderstandtheterm“adsorption”asjustaphysicalprocesswithnochemicalinteraction.
Thedifferencebetweenthephysicaladsorptionandhaemosorptioncanbeseenexperimentally,whentheinfluenceoftemperatureontheprocessisstudied.Growthoftemperaturealwayscausesadecreaseofphysicaladsorption,astheintensityofthethermalmotionofmoleculesincreaseswiththegrowthoftemperatureandthereforetheweakphysicalinteractionforces(VanderVaals’sforces)betweenthemoleculeandthesurfacecannotkeepthemoleculeonthesurface.
Theinfluenceoftemperatureonhaemosorptionhasjustoppositecharacter-ifachemicalreactionbetweenbothmoleculeandsurfaceoccurs,thereactionrategrowsbiggerwiththeincreaseoftemperature.
POSITIVEANDNEGATIVEADSORPTION.
Thatsubstance,whichbindsmoleculesofanothersubstancetoitssurfacewillbefurthercalledadsorbent.
Thatsubstance,themoleculesofwhichareboundtothesurfaceofanothersubstance,willbefurthercalledadsorbate.
Forinstance,ifmoleculesofCO2areboundtothesurfaceofsolidcarbon,carbonactsasanadsorbentandCO2asanadsorbate.
Infact,adsorptionisnotjustbindingofamoleculetothesurfaceofanothersubstance.Amoreprecisedefinitionofadsorptionisasfollows:
Adsorptionisachangeofconcentrationofonecompoundnearthesurfaceofanothercompound.
Adsorptioncanoccuratsurfacesofbothsolidandliquidsubstances.Ifadsorptionoccursonasurfaceofasolidsubstance,adsorptionisusuallyunderstoodasbindingofmoleculesofgas(orsolute,ifsolidsubstanceisincontactwithasolution)tothesurfaceofsolidsubstance.
Ifadsorptionoccursatthesurfaceofliquid,itisusuallyunderstoodasachangeofsolute’sconcentrationinthesurfacelayerofsolution.Forinstance,ifwearedealingwithawatersolutionofaceticacid,adsorptionisunderstoodasanincreaseofCH3COOHconcentrationinthesurfacelayerofthesolution,seefig.15.1.a.
Ifweconsideradsorptionaschangeofonecompound’sconcentrationneartosurfaceofothercompound,adsorptioncanbebothpositiveornegative,seefig.15.1.
Fig.15.1.Positive(a)andnegative(b)adsorption.
Letusconsideravesselwithsolution.Onecantakesamplesofsolutionfromthevolumeofsolutionandfromthesurfacelayerofthesolution.TheconcentrationsofsoluteinthesesamplesconcentrationsofsoluteinbothsamplesCS(fromthesurfacelayer)andCV(fromthevolumeofsolution)willbedifferent.
IfCSCV(theconcentrationinthesurfacelayerisgreater,thaninthevolume,or,inotherwords,thesolutemoreeagerlyresidesinthesurfacelayer,thaninthevolume),adsorptionispositive.
If,incontrary,CSCV(or,inotherwords,soluteresidesmoreeagerlyinthevolumeofsolutionandescapesfromthesurfacelayer),adsorptionisnegative.
1.3.MEASURINGUNITSOFADSORPTION.
Differentmeasuringunitsareusedforadsorption,butallthesedifferentkindsofmeasuringunitsexpresstheamountofadsorbate,boundonagivenamountofadsorbent.
Ifitisreallypossibletodeterminethesurfaceareaoftheadsorbent(forinstance,ifadsorptionoccursonasurfaceofaliquid),adsorptionismeasuredintheunitsmoles/m2org/m2,showingthenumberofmolesorthenumberofgramsofadsorbate,thatisadsorbedon1m2ofadsorbent’ssurface.
Averycommoncaseis,thatthesurfaceareaofadsorbentisunknown.Thishappensinthecaseofsolidadsorbents,becausethedeterminationofsurfaceareaofsolidsisadifficultandcomplicatedtask.Insuchcasesadsorptionisexpressedinunitsmoles/gorg/g,expressingthenumberofmolesorthenumberofgramsofadsorbate,thatareadsorbedonthesurfaceof1gofadsorbent.
Thus,all-in-all,adsorptioncanbeexpressedinunitsmoles/m2,g/m2,moles/gorg/g.
1.4.TYPESOFADSORPTIONANDTHEIRGENERALPROPERTIES
First,adsorptionisdifferent,ifasubstanceisadsorbedinmolecularorionicform.Adsorptionofionshasitsownspecificproperties,thatwillbediscussedinchapter5.
Ifasubstanceisadsorbedinamolecularform(molecularadsorption),thenadsorptiondependsontheaggregatestateoftheadsorbentandtheadsorbate:
1)adsorptioninthefrontierliquid/gas.Inthiscaseinthefrontierbetweenliquidandgasthereareadsorbedmoleculesoftheso-calledsurfaceactivecompounds(seeexplanationinthefurthertext),thataredissolvedintheliquid.
2)adsorptioninthefrontierliquid/liquid.Inthiscasethemoleculesofsurfaceactivecompounds,thatwereinitiallydissolvedinoneorbothliquids,areadsorbedonthefrontieroftwoliquids,whichareinsolubleineachother(forexamplewaterandbenzene).
3)adsorptioninthefrontiersolid/gas.Inthiscasethemoleculesofgasareadsorbedonthesurfaceofasolidsubstance.
4)adsorptioninthefrontiersolid/liquid.Inthiscasethemoleculesofsolutefromtheliquidphaseareadsorbedonthesurfaceofthesolidsubstance.
1.5.ADSORPTIONEQUILIBRIUM
Whenaprocessofadsorption(bindingofthemoleculestothesurfaceofanothersubstance),begins,thecontraryprocess-desorptionorliberationofadsorbedmoleculesfromthesurfacebegins,too.Aftersometime,anequilibriumisreached-thenumberofmolecules,thatareadsorbedonthesurfaceataunitoftimeisequaltothenumberofmolecules,thataredesorbed(leavethesurface)andtheamountofadsorbedsubstancedoesn’tchangeintimeanymore.
Thisadsorptionequilibriumcanbeexpressedas:A+SA(S),where
Aisamoleculeofadsorbate,
Sisafreesite(place)inthesurfaceofadsorbent,
A(S)isamolecule,adsorbed(bound)tothesurfacesite.
Atdifferentconcentrationsofadsorbatedifferentadsorptionequilibriumsarereached-thegreateristheconcentrationofadsorbate,thegreaterwillbethenumberofmoleculesofadsorbate,thatareboundtothesurfaceofadsorbentattheequilibriumstate.
II.ADSORPTIONINTHEFRONTIERLIQUID/GAS
Solutescanbeadsorbedonthesurfaceofsolution(atthefrontierbetweenthesolutionandair),iftheyaresurfaceactive(seechapterII.2.)
Theabilityofaliquidsurfacetoadsorbmoleculesofsoluteiscausedbythefreeenergyoftheliquidsurface.
II.1.FREEENERGYOFLIQUIDSURFACE.SURFACETENSION.
Letusconsiderapuresolventandletusdiscussthedifferencebetweenstateofasolvent’smoleculeinthevolumeofsolventandinthesurfacelayerofit,seefig.15.2.Theattractionforcesofthesurroundingmolecules(shownbyarrowsinfig15.2.)actoneverymoleculeofsolvent.
Forasolventmolecule,situatedinthevolume,theseforcesactequallyinallthespatialdirectionsandthereforetheycompensateeachother.
Thestateofamoleculeinthesurfacelayerisdifferent-practicallynoattractionforcesactatthemoleculefromthesideofgas(gasismuchmorerarefiedwhencomparedtoliquid)andthereforethecomponentattractionforces,thatisorientedtowardstheinsideofliquid(arrowdowninfig.15.2)isnotcompensated,thereforearesultingforce,actinginthedirectiontowardsinsideofliquidremains.
Fig.15.2.Stateofsolvent’smoleculeinthevolume
ofsolventandinthesurfacelayerofit.
Thenon-compensatedattractionforces,thatactinthedirectiontowardsinsideofliquid,causetheso-calledfreesurfaceenergyofliquidES.
Thesurfacefreeenergyisproportionaltothesurfaceareaofliquidandthisproportionalitycanbeexpressedas:
ES=S,(15.1)
whereSistheliquidsurface,m2
Theproportionalitycoefficientsiscalledthesurfacetensionoftheliquid.Thevalueofsurfacetensionshows,howgreatisthesurfacefreeenergyof1mofliquidsurface.Themeasuringunitofis
Ontheotherhand,as1J=1N1m,theunitofscanbealsodefinedas
(15.3)
From(15.3)onecansee,that:
Surfacetensioncanbealsodefinedasaforce,withwhichan1mbroadsurfacetendstocontract.
II.2.SURFACEACTIVITYANDSURFACEACTIVECOMPOUNDS
Asitisknownfromthermodynamics,aprocess,inwhichthefreeenergyofasystemisdecreasing,occursspontaneously.Forthisreasonacompoundcanbeadsorbedonthesurfaceofliquid,ifthepresenceofthiscompoundinthesurfaceofliquiddecreasesthesurfacefreeenergy.
Compounds,thatareadsorbedatsurfacesofliquidsandcauseadecreaseofthesurfacefreeenergy(surfacetension)ofliquid,arecalledsurfaceactivecompounds(anabbreviationSACwillbeusedforsurfaceactivecompoundsinfurthertext)
II.2.1.STRUCTUREOFSACMOLECULES
Tobesurfaceactive,amoleculehastohaveaspecialsortofstructure.Bythemost,SACareorganiccompoundswithabiphilestructure-themoleculeconsistsoftwoparts,oneofwhichisahydrophobichydrocarbonradicalandtheotherisapolarfunctionalgroup,whichishydrophilic.
Bythemost,themoleculeofSACisschematicallydrawnas:
wherethepolargroupisshownasa“head”ofmoleculeandthenon-polarhydrocarbonradicalisshownasa“tail”ofmolecule.
Suchakindofmolecularbuildupischaracteristicfor:
organicacidsR-COOH(R-hydrocarbonradical)
alcoholsR-OH
aminesR-NH2
andsomeotherclassesoforganiccompounds.
Inordertounderstand,whythemoleculeshavingabiphilestructurearesurfaceactive,letusthink,whathappens,ifsuchamoleculeisdissolvedinwater.Waterisapolarcompound,thereforestrongintramolecularinteractionforcesactbothbetweeneachtwoneighboringwatermoleculesandbetweenwatermoleculesandpolargroupsofSAC.
Ifanonpolar“tail”ofSACmoleculeisplacedbetweentwoneighboringwatermolecules,itinterferestheattractionforcesbetweenwatermoleculesandthereforelocationof“tails”ofSACmoleculesinthevolumeofwaterisenergeticallyinconvenient.Forthisreason,the“tails”ofSACmoleculesarepushedoutofthevolumeofsolutiontoitssurface,seefig15.3a.
Astheresult,theconcentrationofSACmoleculesinthesurfacelayerofsolutionisgrowing-apositiveadsorptiontakesplace.ThemoleculesofSACinthesurfaceofwaterareorientedso,thattheirhydrophilic“heads”(polargroups)areinsidewater(becauseattractionforcesactbetweenthesepolargroupsandwatermolecules),butthenon-polargroups(“tails”)areoutsidewater.
Ifwechooseanon-polarsolvent(benzene),thesituationisviceversa-nowthepositioningofpolargroupsinnon-polarmediaisenergeticallyinconvenient.Astheresult,moleculesofSACarealsolocatedmoreinsurfacelayer,thaninthevolumeofsolution(apositiveadsorptiontakesplace),butnowthenon-polargroups(“tails”)areorientedtowardsvolumeofsolutionandpolargroupsareorientedtowardsoutsideofsolution,seeFig.15.3,b.
ThelocationofSACmoleculesinthesurfacelayerofsolutiondecreasesthenumberofsolventmoleculesinthesurfacearea,thusdecreasingthesurfacetension(and,consequently,thesurfacefreeenergy)ofthesolvent.
Fig.15.3.OrientationofSACmoleculesinthesurfaceof
a)polarsolvent(water)b)nonpolarsolvent(benzene)
Thesurfaceactivity,G,isfoundas:
anditisdefinedasthechangeofsurfacetensionofthesolution,causedbyanincreaseofSACconcentrationfor1mole/l.(Occasionally,thesamesymbolisusedforbothsurfaceactivityandGibbs’senergy.Note,thatthesetwounderstandingsarecompletelydifferent!)
II.2.2.COMPARISONOFTHESURFACEACTIVITYOFDIFFERENTSAC.TRAUBE’SRULE.
ThesurfaceactivityincreaseswiththeincreaseofthelengthofhydrocarbonradicalinthemoleculeofSAC.Itiseasytounderstandthisphenomenon,ifweremember,thatalongernon-polarradicaldisturbsthemutualinteractionofthepolarwatermoleculesmoreefficientlythanashorterone.Forthisreason,thelongeristhehydrocarbonradicalofaSAC,themoreintensivelyitwillbepushedoutfromthesolutionbywatermolecules.
Wheninvestigatingthesurfaceactivityofunivalentorganicacids,Traubefoundout,that:
Forunivalentorganicacidsanincreaseofthelengthofhydrocarbonradicalbyone-CH2-groupcausesanincreaseofsurfaceactivity3-5times.(Traube’srule).
ThisruleisvalidforotherclassesofSAC,aswell.TocomparethesurfaceactivityofSACfromdifferentclassesoforganiccompounds,onecanusethefollowingcriterion:
TheloweristhesolubilityofgivenSACinthegivensolvent,thegreaterisitssurfaceactivity.
II.3.CALCULATIONOFADSORPTIONVALUEINTHEFRONTIERLIQUID/GAS.
ThevalueofadsorptionofaSACinthesurfaceofsolution(inthefrontierbetweensolutionandair)isfound,usingGibbs’sequation:
,where:(15.5)
isthevalueofadsorption,moles/m2;
isthesurfacetensionofthesolution,J/m2;
CistheconcentrationofSAC,moles/l;
Risuniversalgasconstant;
Tisabsolutetemperature,K
Inapproximatecalculationstheequation(15.5a)isused:
(15.5a)
Thensurfacetensions1and2areexperimentallymeasuredattwodifferentconcentrationsofSACC1andC2,andtheirdifference
∆=1-2
isfound.Theotherparametersintheequation(15.5a)are:
∆C=C1-C2and
Theminus(“-”)signintheequations(15.5)and(15.5a)istheresultofthefact,thatthesurfacetensiondecreasesatpositiveadsorption.
Ifacompoundissurfaceinactive(likemostinorganiccompounds,e.g.NaCl),anincreaseofitsconcentrationcausesanincreaseofthesurfacetensionand,astheresult,adsorptionisnegative-theconcentrationofcompoundinthesurfacelayerissmaller,thaninthevolumeofsolution.
AdsorptionofSACinthefrontierbetweenliquidandgas,asitcanbeseenfromGibbs’sequation,dependsonthefollowingfactors:
1)ConcentrationofSAC-thegreateritis,thegreaterisadsorption,
2)temperature-thegreateritis,thesmallerbecomesadsorption,
3)surfaceactivityofsolute(-d/dC)-thegreateritis,thegreaterisadsorption.
II.4.DEPENDENCEOFADSORPTIONONTHECONCENTRATIONOFSAC(ADSORPTIONISOTHERM).
Adsorptionisothermisacurve,thatshowsthedependenceofadsorptionontheconcentrationofSACatagiventemperature,seefig.15.4.
Asonecansee,theadsorptionisothermhas3areas(seetheorientationofSACmoleculesinthese3areasinfig.15.5):
1starea-whileconcentrationofSACisverysmall,allthesurfaceofliquidisfreeandamoleculeofSACimmediatelyfindsafreeplaceinthesurface,thereforeisproportionaltoC.AtthissituationamoleculeofSAC“lies”onthesurfaceofliquid.
2ndarea-whentheconcentrationofSACgrowsbigger,notallthesurfaceofliquidisfreeanymoreandthemoleculesofSAChaveto“seek”forafreeplaceinthesurface,thereforethereisanegativedeviationfromthedirectproportionalitybetweentheadsorptionandconcentrationofSAC.
3rdarea-AtverygreatconcentrationsofSACallthesurfaceofliquidisalreadyoccupiedbySACmoleculesandafurtherincreaseofSACconcentrationdoesn’tcauseanyincreaseofadsorption-themaximaladsorptionisalreadyreached.MoleculesofSACinthisareastandvertically,formingtheso-calledLangmuir’sfence.
Asonecansee,theconsiderationsaboutSACconcentrationandvalueofadsorptionareverymuchaliketothoseabouttheconcentrationofsubstrateandtherateofenzymecatalyzedreaction.
Fig.15.4.Adsorptionisotherm Fig.15.5.OrientationofSAC. moleculesatdifferent regionsofisotherm.
II.5.THECONNECTIONBETWEENISOTHERMSOFSURFACETENSIONANDADSORPTION.
BothisothermofSACadsorptionandofsurfacetensionofaSACsolutionareshowninfig.15.6.WhentheconcentrationofSACtendsto0,tendsto0aswell,butthesurfacetensiontendstotheoneofpuresolvento.
WhentheconcentrationofSACgrows,thesurfacetensionisdecreasing,butadsorptionisincreasing.Whenadsorptionreachesitsmaximalvaluemax(amonomolecularlayerofSAConthesurfaceofsolutionisformed)thesurfacetensionhasreacheditsminimalvalue,whichcorrespondstothesurfacetensionofpureSAC(ifSACisaliquidcompoundatthistemperature).
Fig.15.6.IsothermsofadsorptionandsurfacetensionofaSACsolution
II.6.USEOFTHEMAXIMALADSORPTIONFORFINDINGOFLENGTHANDTHECROSS-SECTIONAREAOFSACMOLECULE.
Whenadsorptionhasreacheditsmaximalvaluemax,allthesurfaceofliquidiscoveredbyamonomolecularlayerofSACmolecules,whichstandvertically.Knowingthevalueofmax,onecancalculatethenumberofmolecules,thatoccupyagivensurfaceareaSoftheliquid.
Fig.15.7.Situationonthesurfaceofliquidatmax.
Asmax isthemaximalnumberofSACmoles,thatcanbeplacedona1m2areaofsolutionsurface,
,where(15.6)
nisthenumberofmolesofSACand
Sisthesurfacearea.
Onecanfindthenumberofmoles,locatedonasurfaceareaSas
n=maxS(15.6a)
andthenumberofmolecules,thatarelocatedonthissurfaceareais:
N=nNA=maxSNAmolecules/m2(15.6b)
(NA-Avogadro’snumber).
Now,whenweknow,howmanymoleculesarelocatedon1m2ofliquidsurface,wecanfindthearea,correspondingto1molecule:
(15.7)
Next,letusderiveanequationforcalculationofthelengthofaSACmolecule.ForthesepurposeswehavetoexpressthemassofadsorbedSACintwodifferentways:
First,themassofadsorbedSACcanbefoundasitsvolume,multipliedbyitsdensity().VolumeoftheadsorbedlayerofSACis
V=Sl,where
Sisthesurfaceareaand
listhelengthofmolecule
(asitisamonomolecularlayerofSAC,thethicknessofthelayerlisequaltothelengthofSACmolecules,standingvertically).SothemassoftheSAClayeris
m=VSAC=SlSAC(15.8)
Ontheotherhand,themassofacompoundcanbeexpressedasthenumberofmoles,multipliedbythemolarmassofcompound:
m=nM,
butasthenumberofmolescanbefoundfromtheexpression(15.6a),massofSACis:
m=maxSMSAC(15.9)
WehavefoundthesamemassofSACby2differentmethods,thereforetheleftsidesofequations(8)and(9)mustbeequal.
Iftheleftsidesof2equationsareequal,rightsidesareequal,too:
SACSl=maxSMSACor
III.ADSORPTIONINTHEINTERFACELIQUID/LIQUID
Inthiscaseofinterface,aswellasintheliquid/airinterface,themoleculesofSAC,dissolvedinoneorbothliquidscanbeadsorbed.
MoleculesofSACinliquid/liquidinterfacewillbeorientedso,thatthehydrophilicpartsareturnedtowardsthemorepolarliquidandthehydrophobicparts-towardsthelesspolarliquid.Ifwechoose,forinstance,waterandbenzene(theyareinsolubleineachother),benzenewillbeintheupperlayer(becauseitsdensityissmaller)andwaterwillbesituatedinthelowerlayerandthemoleculesofSACwillbeorientedasshowninfig.15.8.
Fig.15.8.OrientationofSACmoleculesintheinterfacebetweenwaterandbenzene.
IV.MOLECULARADSORPTIONATSOLIDSURFACES.
Inthischapterwewilldealwiththeadsorptiononsolidsurfaces.Adsorptiononsolidsurfaceshas2maincases:
1)adsorptionintheinterfacebetweenasolidandgas(seechapterIV.2)and
2)adsorptionintheinterfacebetweenasolidandsolution(chapterIV.3).
InbothcasestheadsorptionisothermissimilarandisdescribedbyFreundlich’s(chap.IV.4.1)orLangmuir’s(chap.IV.4.2.)equations.
Adsorptiononsolidsurfacesisstronglydependentonthespecificsurfaceofsolid(chap.IV.1)andonehastonote,thattheadsorptiondoesn’ttakeplaceonallthesurfaceofsolidadsorbent,butonlyontheso-calledactivesitesinthesurface-places,wheresurfaceisuneven,vacancies(lackofatominitsnormalposition)orplaces,whereanatomislocatedonthesurfaceinthenextatomplane.
IV.1.SPECIFICSURFACEOFSOLIDS
Theratiobetweenthesurfaceareaandvolumeofasolidiscalledspecificsurface:
anditsmeasuringunitinSIsystemis
Forasolidcompound,consistingofcubicparticles,thespecificsurfacecanbefoundasaratiobetweenthesurfaceareaofcubeandthevolumeofcube.AsthesurfaceareaofcubeisS=6a2,whereaisthelengthofthecubeedgeandthevolumeofcubeisV=a3,thespecificsurfaceforcubicparticlesisfoundas:
Ifthesolidcompoundconsistsofsphericparticles,thesurfaceareaofsphereisS=4r2andthevolumeofsphereis,thereforethespecificsurfaceforsphericparticlesis:
where
disthediameterofthesphere.
Asonecansee,thespecificsurfaceinbothcasesisfoundas6,dividedbythelinearsizeofparticle
Thespecificsurfaceincreasesquickly,ifthesolidcompoundisgrindtosmallerparticlesandinmanycasesthespecificsurfacecanreachverylargevalues.
Intable15.1.thereareshownthesurfaceareasof1cm3ofsolidcompoundsatdifferentlinearsizesofparticles.Inthecases,whenthesolidisgroundtoaparticlesize,thatcorrespondstothesizeofcolloidalparticles,thesurfaceof1cm3becomesreallyveryhuge.
Table1.Surfaceareaof1cm3ofsolidatdifferentparticlesizes.
Linearsizeof
particles
a(m) / Systems,inwhichsuchaparticlesizeisobserved / Totalsurfaceareaof1cm3ofsolidsubstance / Comparison
10-2 / pebbles / 6cm2 / surfaceofacoin
10-3 / gravel / 60cm2 / anote-book
10-5 / suspensionparticles / 600cm2 / surfaceofalittletable
10-7 / greatestcolloidalparticles / 60m2 / floorofabigroom
10-9 / smallestcolloidalparticles / 6000m2 / 1/2ofafootballsquare
IV2.ADSORPTIONINTHEINTERFACESOLID/GAS.
Intheinterfacebetweenasolidandgasadsorptionofgasmoleculestakesplace.Thevalueofadsorptionisdeterminedby:
1)thespecificsurfaceofadsorbent(seepreviouschapter)-thegreateritis,thegreaterisadsorption.Forthisreasontheadsorbenthastobegroundtoasmallparticlesize.
2)temperature-thegreateritis,themoreintensiveisthethermalmotionofgasmoleculesandthesmallerbecomesadsorption.
3)pressure(concentration)ofgas-thegreateritis,thegreaterisadsorption.
4)natureofgasandadsorbent(solid)-polaradsorbents(forinstance,silicagelSiO2)betteradsorbpolargases,non-polaradsorbents(e.g.)betteradsorbmoleculesofnon-polargases.
5)whenadsorptionofdifferentgasesonthesamesolidadsorbentiscompared,itisfoundout,thatadsorptionisgreaterforthegases,thatcanbeliquefiedmooreeasily.
ThereasonforadsorptionofgasesonsolidsurfacesistheexistenceofVanderVaals’sforces(induction,orientationanddispersionforces)andtheadsorptiontakesplaceontheactivesitesinthesurfaceofsolid(andnotatallsurfaceofadsorbent).
Theadsorptionisothermandequations,describingit,arediscussedinchapterIV.4.
IV.3.MOLECULARADSORPTIONATTHEINTERFACEBETWEENASOLIDADSORBENTANDSOLUTION
IV.3.1.AFFECTINGFACTORS
Tounderstandtheadsorptionattheinterfacebetweenasolidadsorbentandsolution,onehastotakeintoaccount,thatherethreesubstancesareincontactatthesametime-theadsorbentisincontactwithbothsolventandsolute.
Ofcourse,adsorptionofsolute,andnotofthesolventisrequired,becauseitallowstoextractthesolutefromsolution.Aswell,insomecasestheadsorptionofsolutefromsolutionprovidesapossibilitytogetridofsomeadmixtures,thatarepresentinsolution(forinstance,togetridofaldehydesandhigheralcoholsintheindustryofalcoholicdrinks),inothercasesitallowstoseparateanecessarycompoundfromsolvent.
Inordertocarryouttheadsorptionofsolute,onehastobesure,thatthesolventisnotadsorbed-assoonasthesolventcanbeadsorbedonthegivenadsorbent,itwillimmediatelycoveralltheadsorbent’ssurface(asthereisgreatammountofsolvent)andnoplacewillremainforthesolute.
Practicallyallthismeans,thatifthesoluteisapolarcompound,apolar(hydrophilic)adsorbenthastobechosen(polarcompoundsareadsorbedwellonpolarsurfaces),butthesolventmustbeanon-polarcompound.
Inthecontrarycase,ifthesolute,thathastobeadsorbed,isnon-polar,anon-polar(hydrophobic)adsorbenthastobeused,butthesolventhastobepolar(thenitwillnotbeadsorbed).
Ifthesolute,thathastobeadsorbed,isaSAC,itcanbeadsorbedonbothpolarandnon-polaradsorbents(remember,thatmoleculesofSACarebiphile).Insuchacasejustoppositecharactersofsolventandadsorbenthavetobechosen.
Letusdiscussarealexample.Ifaceticacid(itisaSAC)hastobeadsorbedfromitswatersolution,onehastochooseahydrophobicadsorbent,forinstance,.Thenaceticacidwillbeadsorbed,butwaternot.
Ifthesameaceticacidhastobeadsorbedfromitsbenzene(anon-polarsolvent)solution,theadsorbenthastobechosenhydrophilic(polar),forinstance,itcouldbesilicagel.AceticacidasaSACcanbeadsorbedonsilicagel,butbenzenecannot.
All-in-all,adsorptiononsolidadsorbentsfromsolutionsisaffectedbythefollowingfactors:
1)t°-thehigheristemperature,thelowerisadsorption,
2)concentrationofsolute-thegreateritis,thegreaterisadsorption,
3)natureofadsorbentandsolvent(seediscussionabove),
4)natureofsolute(seediscussionabove),
5)therelationsbetweensoluteandsolvent-thelowerissolubilityofthegivensoluteinthegivensolvent,thegreaterwillbeadsorption.
IV.3.2.DETERMINATIONOFADSORBENT’SNATURE.
Asonecouldseefromthepreviouschapter,foracorrectchoiceofadsorbentitisnecessarytoknow,whethertheadsorbentispolar(hydrophilic)ornon-polar(hydrophobic).Itisnotalwaysclearlyknownbeforeexperiment.Thenitisnecessarytodeterminethenatureofadsorbent.Itisdoneasfollows:
Agivenamountofadsorbent(usually1g)ismoistenedbywaterandanother1gofadsorbentbybenzene(non-polarsolvent)andtheamountofheat,liberatedintheseprocessesismeasured.Theheat,liberatedinthisprocessiscalledmoisteningheat(Qmoistening)oftheadsorbent.
Ifthemoisteningheatbywaterisgreater,thanbybenzene,theadsorbentiscalledhydrophilic,ifmoisteningheatbybenzeneisgreater,thanbywater,adsorbentishydrophobic:
Qmoist.,H2OQmoist.,C6H6=>hydrophilicadsorbent
Qmoist.,C6H6Qmoist.,H2O=>hydrophobicadsorbent
IV.3.3.CHANGEOFADSORBENT’SNATUREINADSORPTIONPROCESS
IfaSACisadsorbedonthesurfaceofadsorbent,thepropertiesofsurfacechangetotheoppositeones.Forinstance,thesurfaceofcoal(ahydrophobicadsorbent)becomeshydrophilicafteradsorptionofSACmoleculesbecomeshydrophilic,butthesurfaceofsilicagel(ahydrophilicadsorbent)-becomeshydrophobic,whenmoleculesofSACareadsorbedtoit,seefig.15.9.
Fig.15.9SurfacesofadsorbentsafteradsorptionofSACmolecules:a-surfaceofcoal,b-surfaceofsilicagel.
Atthesurfaceofcoal,thatishydrophobic(non-polar)themoleculesofSACarebound,usingtheirnon-polarhydrocarbonradicals(fig.15.9a),thereforethepolargroupsofSACmoleculesareturnedtowardsoutside.WhenallthesurfaceiscoveredbySACmolecules,ithasbecomehydrophilic,becauseitspropertiesarenowdeterminedbythepolargroupsofSACmolecules.
Atthesurfaceofsilicagel(fig.15.9b),whichispolar,themoleculesofSACarebound,usingtheirpolargroupsandinthiscasethenon-polarhydrocarbonradicalsaretheones,thatareturnedtowardsoutside.WhenallthesurfaceofsilicageliscoveredbymoleculesofSAC,ithasbecomehydrophobic(non-polar).
IV.4.ADSORPTIONISOTHERMSONSOLIDADSORBENTSFREUNDLICH’SANDLANGMUIR’SEQUATIONS
Theformoftheadsorptionisothermatthesurfaceofasolidadsorbentissimilarbothforadsorptionofgasesandforadsorptionofsolutefromsolution,seefig.15.10.
Theonlydifferencebetweenthesetwoisothermsis,thatinthecaseofadsorptionofthemoleculesofagasonasolidsurface,thevalueadsorptionisplottedversuspressureofgas,butinthecaseofadsorptionofsoluteonthesurfaceofasolidadsorbent(atthesolid/solutioninterface)adsorptionisplottedversusconcentrationofsolute.
Fig.15.10.Adsorptionisotherms:
a-attheinterfacesolid/gas, b-attheinterfacesolid/solution.
Adsorptionisothermcanbedividedinto3areas:
1)ionthefirstarea,whiletheconcentration(orpressureionthecaseofagaseousadsorbate)ofadsorbateislittle,thesurfaceofadsorbentispracticallyfree,thereforethemoleculesofadsorbateeasilyfindnon-occupiedplacesinthesurfaceofadsorbent.Forthisreasonanincreaseofgaspressureorsolute’sconcentrationcausesaproportionalincreaseofadsorption.
2)inthesecondpartoftheisothermagreatpartofadsorbent’ssurfaceisalreadyoccupiedbythemoleculesofadsorbate.Whenconcentration(pressure)ofadsorbateincreases,thenewmoleculesofadsorbatehavetoseekforafreeplaceinthesurface,thereforeadsorptiongrowslessthenproportionallytotheconcentration(pressure)ofadsorbate.
3)inthethirdareaoftheadsorptionisothermallthesurfaceofadsorbentisalreadycoveredbythemoleculesofadsorbate,nomoremoleculescanbeadsorbedatanincreaseofconcentration(pressure)ofadsorbate,thereforeatafurtherincreaseoftheamountofadsorbatethevalueofadsorptionremainsconstant-amaximalvalueofadsorptionmaxisreached.
IV.4.1.FREUNDLICH’SEQUATION
Aswewillseeionthefurthertext,twodifferentequationsareusedtodescribemathematicallytheadsorptiononsolidadsorbents.TheyarenamedFreundlich’sequationandLangmuir’sequation.
Langmuir’sequationisusedtodescribealltheadsorptionisotherm,(seenextchapter).Langmuir’sequationworkswellinthe1stand3rdareasoftheisotherm,butitisveryunpreciseinthe2ndarea.
Inmanypracticalcasesonehastodealwiththe2ndareaoftheadsorptionisotherm.InthisareaadsorptionisdescribedwellbyFreundlich’sequation,themathematicalformofwhichlooksasfollows:
=kp1/n(forgasadsorption)
=kC1/n(foradsorptionfromsolutions)
where:isadsorption,moles/g
porCispressureofgasorconcentrationofsolute
kand1/nareempiricalconstants.
Thus,whenworkinginthe2ndareaofadsorptionisotherm,onehastouseFreundlich’sequation.Ifonehasstudiedthedependenceofadsorptionontheconcentration(pressure)ofadsorbate,thenextistodeterminetheconstantskand1/noftheequation-iftheyareknown,theadsorptionisothermcanberestoredatanytime.
Todeterminetheconstantskand1/n,onehastomeasureexperimentallytheadsorptionatdifferentconcentrationsofsolute(orpressuresofagaseousadsorbate),tochangetheformofFreundlich’sequationinsuchaway,thatanequationofastraightlineisobtainedandtographicallydeterminethevaluesconstants.
TheFreundlich’sequationcanbetransformedintoanequationofstraightline,ifalogistakenfrombothsidesofequation:
log=log(kC1/n)or
log=logk+logC1/nor
log=logk+logC
y = b +a x
Theobtainedequationisany=ax+btypeequationofstraightline,wherelogplaystheroleofy, logCplaystheroleofx, logkplaystheroleofthecoefficientband1/nplaystheroleofthecoefficienta.
Fig.15.11.GraphicdeterminationoftheconstantsofFreundlich’sequation
Inordertodeterminetheseconstantsgraphically,onehastoplotlogasafunctionoflogC,seefig.15.11.
Nowlogkcanbefoundasthelogarithmofadsorption(log)atlogC=0,but1/n(aswellasthecoefficientaintheordinaryequationofstraightline)canbedeterminedastangentoftheanglebetweenthegraphandx-axis.
IV.4.2.LANGMUIR’SEQUATION
IncontrarytoFreundlich’sequation,thatiswrittenempirically,Langmuir’sequationhasbeenderivedfromtheadsorptionequilibriumusingthefact,thatwhentheadsorptionequilibriumisreached,theratesofadsorptionanddesorptionareequal.Adsorptionequilibriumcanbewrittenas:
A+SASwhere
Aisamoleculeofadsorbate,
Sisafreesiteinthesurfaceofadsorbent,
kdesandkadsaretherateconstantsofadsorptionanddesorptionprocesses.
Langmuir’sequationlookslike:
(forgasadsorption)
(foradsorptionfromsolution)
where:
isthevalueofadsorption,moles/g,
maxisthemaximaladsorption,moles/g,
porcisthepressureofgasortheconcentrationofsolute,
KisLangmuir’sconstant,whichisequaltotheratiobetweentherateconstantsofadsorptionanddesorptionprocesses(kads/kdes).
Langmuir’sequationisamathematicallysimilartotheMichaelis’s-Menten’sequation,thereforeitsabilitytodescribetheadsorptionprocessissimilar,too.
1.Iftheconcentration(pressure)ofadsorbateislowandCK,onecanignoreC(orp)inthenominatoroftheequation.Thentheequationbecomes:
AsKandmax areconstantvalues,theobtainedequationisanequationofdirectproportionalityandsuitswellthe1stpartoftheadsorptionisotherm(fig.15.10).
2.Iftheconcentration(pressure)ofadsorbateisveryhigh,CKandonecanignoreKinthenominatorofLangmuir’sequationandtheequationbecomes:
Asitwassaidbefore,itisnotworthtouseLangmuir’sequationinthe2ndarea,whereitisunprecise.InthisareaitisbettertouseFreundlich’sequation.
V.ADSORPTIONOFIONS.
Inallthepreviouschaptersthemolecularadsorptionwasdiscussed-inallthecasesadsorbatewasinaformofmolecules.
Adsorptionofionshasitsownspecificproperties,differentfromtheonesofmolecularadsorption.Therearetwomaincasesofionadsorption,whichdifferverymuchfromeachother:
1)ionexchangeadsorption,inwhichtheionsfromthesolutionexchangewiththeions,thatarepresentinthesurfacesofspecificadsorbents-ionexchangeresins(alsocalledionites),seechapterV.1.,
2)selectiveadsorptionofions,whichoccursonthesurfacesofinsolublesalts,whentheinsolublesaltsareinacontactwithwatersolutionsofelectrolytes(seechapterV.2.)
V.1.IONEXCHANGEADSORPTION
V.1.1.THESTRUCTUREOFIONEXCHANGERESINS
Ionexchangeadsorptionoccursonthesurfacesofionexchangeresins(ionites).
Theionexchangeresinsarewater-insolublepolymers.Theycontainfunctionalgroups,thatareabletoexchangeionswiththesurroundingsolution.Ionexchangeresins,whichareabletoexchangecations,arecalledcationexchangeresins,butthese,whichareabletoexchangeanions,arecalledanionexchangeresins.
Incationexchangeresinsthefunctionalgroups,thatareabletoexchangecationsare,bythemost,theacidicgroups-SO3Hor-COOH.ThesegroupscanexchangetheirHionswithanyotherpositiveions.ThegeneralformofacationexchangeresinthereforeiswrittenasR-Handitsionexchangereactionas:
R-H+H+R-Me+H+
Inanionexchangeresinsthefunctionalgroups,thatareabletoexchangeanionsarebasic,thereforetheyareabletoexchangeOH-ionswithothernegativeionsfromthesurroundingsolution.
AnanionexchangeresininageneralformiswrittenasR-OHanditsionexchangereactionas:
R-OH+X-R-X+OH-
Thestructuresofcationexchangeresinsandanionexchangeresinsareshowninfig.15.1
a b
Fig.15.12.Schematicstructuresof
a-cationexchangeresin,b-anionexchangeresin
Asonecansee,inthecaseofcationexchangeresinthenegativechargesarelocatedintheporousstructureoftheionexchangeresin,butH+ionsarelocatedinthesolutioninsidetheporesofitsstructure.
Forinstance,acationexchangeresin,whichhasasulphhydrylgroup-SO3Hinitsstructurecandissociate,sendingH+ionsintotheoutersolution:
Thenegativeionremainsinthestructure,butthepositiveH+ionistransferredintothesolution,thatfillstheporesofthecationexchangeresinand,consequently,thisH+ioncanbeexchangedtoametalionfromthesolution.
Ananionexchangeresin,onitsturn,dissociatesso,thatthepositiveionremainsinitsstructure,butthenegativeOH-ionistransferredintothesolution,thatfillsthepores:
andcanthereforebeexchangedtoanothernegativeion.
V.1.2.SPECIFICPROPERTIESOFIONEXCHANGE.
Theionexchangeadsorptionhastwoveryimportantspecificproperties:
1.Ionexchangeproceedsinequivalentamounts.Thismeans,thatwhenoneequivalentofionsisboundtotheionexchangeresin,oneequivalentofH+ionsorOH-ionsistransferredintosolution.
Thus,ifacationisboundtothecationexchangeresin,thenumberofH+ions,transferredintothesolution,isequaltothechargeofthecation:
R-H+Na+R-Na+H+
Aswell,incaseofanionexchangeresins,whenanacidremainderionisboundtotheanionexchangeresin,thenumberofliberatedOH-ionsisequaltothechargeofacidremainderion:
Thismeans,thatwhenmetalionsfromthesolutionareboundtocationexchangeresin,anequivalentamountofH+ionsaretransferredintosolution,butwhenanionsareboundtoanionexchangeresin,anequivalentamountofOH-ionsaretransferredintothesolution.
Usingthisproperty,onecandeterminethetotalconcentrationofcationsinthesolutionwithoutsystematicanalysisofeachion.Itisenoughtopassthissolutionthroughacolumn,filledwithcationexchangeresin-allthecationswillbeexchangedtoH+ions.AfterthattheliberatedH+ionscanbetitratedbyastrongbase.
Aswell,todeterminethetotalconcentrationofanionsitisenoughtopassthesolutionthroughionexchangecolumn,filledwithanionexchangeresinandthentotitratetheliberatedOH-ionsbyastrongacid.
2.Ionexchangeadsorptionisreversible.Thismeans,thatthesameionexchangeresincanbeusedmanytimes.Whenacationexchangeresinissaturatedwithmetalions(alltheH+ionsintheacidicfunctionalgroupsofthecationexchangeresinarealreadyreplacedbymetalions),thecationexchangeresincanberegeneratedintoitsinitialform,iftheionexchangecolumniswashedbyasolutionofastrongacid-thentheionexchangeoccursintheoppositedirection,themetalionsarewashedoutfromthecationexchangeresinandH+ionsreplacetheminthefunctionalgroupsoftheresin,forinstance,
R-Na+HCl=>R-H+NaCl
Anionexchangeresinscanberegeneratedbywashingthemwithasolutionofstrongbase,thentheacidremainderionsarewashedoutfromtheresinsandreplacedbyOH-ionsinthefunctionalgroupsofanionexchangeresins,e.g.:
R-Cl+NaOH=>R-OH+NaCl
Aftersucharegenerationtheionexchangeresinsarereadyforuseagain.
V.1.3.APPLICATIONSOFIONEXCHANGEADSORPTION
Ionexchangeadsorptioncanbeusedfor:
1)purificationofwater(theso-calleddeionizedwaterisobtainedthen).Todothis,waterisfirstpassedthroughacolumn,filledwithacationexchangeresin,whereallthemetalionsofthesolutionarechangedtoH+ions.
Afterthat,waterispassedthroughacolumn,filledwithanionexchangeresinwherealltheacidremainderionsarechangedtoOH-ions.Finally,H+andOH-ionsreacttoformwater:
H++OH-=>H2O
andpurewaterisobtained.Thismethodforwaterpurificationiswidelyusedinsteadofdistillation.
2)Forpracticalseparationofmetalionsfromeachother.Severalrulesregulatetheadsorptiopnofionsofdifferentmetalsoncationexchangeresins:
1.Thegreateristhechargeofion,thestrongeritisboundtothesurfaceoftheionexchangeresin.Forinstance,forNa+,Ca2+andAl3+ionstheabilitytobeboundtothesurfaceofacationexchangeresingrowsinthefollowingsequence:Na+Ca2+Al3+.
2.Ifthechargeofdifferentionsisequal,theiradsorptionabilityontheionexchangeresinsisdeterminedbythesizeofions:thegreateristhesizeofion,thestrongeritisboundtotheionexchangeresin(infact,thegreateristhesizeofion,theweakeritishydratedandthereforetheeasieritisadsorbed).Thus,forinstance,K+isboundstrongerthanNa+orBr-isboundstrongerthanCl-.
/ Fig.15.13.Separation of metal ions
in cation exchange column
If,forinstance,asolution,containingamixtureofNa+,Ca2+andAl3+ionsisbepouredintoacolumn,filledwithacationexchangeresin,andafterthatasolution,containingdilutedHClispassedthroughthecolumn,themetalionsstarttravellingdownbythecolumn.InthisexampleNa+ ionswillbethefirstonestocomeoutfromthecolumn,astheyareweakerboundtotheionexchangeresin,Ca2+ionswillcomenextandAl3+ionswillbethelastonestocomeout.
Iftheionexchangecolumnislongenough,insuchawayitwillbepossibletocompletelyseparatethemetalionsfromeachother.
V.2.SELECTIVEADSORPTIONOFIONS
Theselectiveadsorptionofionsoccursonthesurfacesofinsolublesalts.Thiscaseofadsorptionisresponsiblefortheformationofcolloidalparticlesandwillbediscussedatthetopic“Colloidalsolutions”.